Accuracy and sources of error for an angle independent volume flow estimator

Jonas Jensen, J. B. Olesen, P. Hansen, M. Nielsen, J. Jensen
{"title":"Accuracy and sources of error for an angle independent volume flow estimator","authors":"Jonas Jensen, J. B. Olesen, P. Hansen, M. Nielsen, J. Jensen","doi":"10.1109/ULTSYM.2014.0425","DOIUrl":null,"url":null,"abstract":"This paper investigates sources of error for a vector velocity volume flow estimator. Quantification of the estimator's accuracy is performed theoretically and investigated in vivo. Womersley's model for pulsatile flow is used to simulate velocity profiles and calculate volume flow errors in cases of elliptical vessels and not placing the transducer at the vessel center. Simulations show, i.e., that volume flow is underestimated with 5 %, when the transducer is placed 15 % from the vessel center. Twenty patients with arteriovenous fistulas for hemodialysis are scanned in a clinical study. A BK Medical UltraView 800 ultrasound scanner with a 9 MHz linear array transducer is used to obtain Vector Flow Imaging sequences of a superficial part of the fistulas. Cross-sectional diameters of each fistula are measured on B-mode images by rotating the scan plane 90 degrees. The major axis of the fistulas was on average 8.6 % larger than the minor axis, so elliptic dimensions should be taken into account in volume flow estimation. The ultrasound beam was on average 1.5 ± 0.8 mm off-axis, corresponding to 28.5 ± 11.3 % of the major semi-axis of a fistula, and this could result in 15 % underestimated volume flow according to the simulation. Volume flow estimates were corrected for the beam being off-axis, but was not able to significantly decrease the error relative to measurements with the reference method.","PeriodicalId":153901,"journal":{"name":"2014 IEEE International Ultrasonics Symposium","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2014.0425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper investigates sources of error for a vector velocity volume flow estimator. Quantification of the estimator's accuracy is performed theoretically and investigated in vivo. Womersley's model for pulsatile flow is used to simulate velocity profiles and calculate volume flow errors in cases of elliptical vessels and not placing the transducer at the vessel center. Simulations show, i.e., that volume flow is underestimated with 5 %, when the transducer is placed 15 % from the vessel center. Twenty patients with arteriovenous fistulas for hemodialysis are scanned in a clinical study. A BK Medical UltraView 800 ultrasound scanner with a 9 MHz linear array transducer is used to obtain Vector Flow Imaging sequences of a superficial part of the fistulas. Cross-sectional diameters of each fistula are measured on B-mode images by rotating the scan plane 90 degrees. The major axis of the fistulas was on average 8.6 % larger than the minor axis, so elliptic dimensions should be taken into account in volume flow estimation. The ultrasound beam was on average 1.5 ± 0.8 mm off-axis, corresponding to 28.5 ± 11.3 % of the major semi-axis of a fistula, and this could result in 15 % underestimated volume flow according to the simulation. Volume flow estimates were corrected for the beam being off-axis, but was not able to significantly decrease the error relative to measurements with the reference method.
不依赖角度的容积流量估计器的精度和误差来源
本文研究了矢量速度体积流量估计器的误差来源。定量估计器的精度进行了理论和体内研究。Womersley的脉动流模型用于模拟椭圆血管的速度分布,并计算在不将换能器放置在血管中心的情况下的体积流量误差。模拟表明,当换能器放置在距离容器中心15%的位置时,体积流量被低估了5%。本文对20例血液透析动静脉瘘患者进行了临床扫描。使用BK Medical UltraView 800超声扫描仪和9 MHz线性阵列换能器获得瘘表面部分的矢量流成像序列。通过将扫描平面旋转90度,在b模式图像上测量每个瘘管的横截面直径。瘘管的长轴比短轴平均大8.6%,因此在容积流量估计中应考虑椭圆尺寸。超声束平均离轴1.5±0.8 mm,相当于瘘管主半轴的28.5±11.3%,根据模拟,这可能导致15%的体积流量低估。对光束离轴的体积流量估计进行了修正,但与参考方法相比,不能显著降低误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信