Semi-blind speech extraction for robot using visual information and noise statistics

H. Saruwatari, N. Hirata, Toshiyuki Hatta, Ryo Wakisaka, K. Shikano, T. Takatani
{"title":"Semi-blind speech extraction for robot using visual information and noise statistics","authors":"H. Saruwatari, N. Hirata, Toshiyuki Hatta, Ryo Wakisaka, K. Shikano, T. Takatani","doi":"10.1109/ISSPIT.2011.6151571","DOIUrl":null,"url":null,"abstract":"In this paper, speech recognition accuracy improvement is addressed for ICA-based multichannel noise reduction in spoken-dialogue robot. First, a new permutation solving method using a probability statistics model is proposed for realistic sound mixtures consisting of point-source speech and diffuse noise. Next, to achieve high recognition accuracy for the early utterance of the target speaker, we introduce a new rapid ICA initialization method combining robot video information and a prestored initial separation filter bank. From this image information, an ICA initial filter fitted to the user's direction can be used to save the user's first utterance. The experimental results show that the proposed approaches can markedly improve the word recognition accuracy.","PeriodicalId":288042,"journal":{"name":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2011.6151571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, speech recognition accuracy improvement is addressed for ICA-based multichannel noise reduction in spoken-dialogue robot. First, a new permutation solving method using a probability statistics model is proposed for realistic sound mixtures consisting of point-source speech and diffuse noise. Next, to achieve high recognition accuracy for the early utterance of the target speaker, we introduce a new rapid ICA initialization method combining robot video information and a prestored initial separation filter bank. From this image information, an ICA initial filter fitted to the user's direction can be used to save the user's first utterance. The experimental results show that the proposed approaches can markedly improve the word recognition accuracy.
基于视觉信息和噪声统计的机器人半盲语音提取
本文研究了基于ica的语音识别多通道降噪技术在语音对话机器人中的应用。首先,提出了一种基于概率统计模型的点源语音和漫射噪声混合声的置换求解方法。其次,为了提高目标说话人早期话语的识别精度,我们引入了一种新的快速ICA初始化方法,该方法结合了机器人视频信息和预存储的初始分离滤波器组。从这些图像信息中,可以使用适合用户方向的ICA初始滤波器来保存用户的第一个话语。实验结果表明,该方法能显著提高单词识别的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信