Digital Transformation for Automated Test Systems

Kaleb S. Romero, Jared J. Boyden, W. J. Headrick
{"title":"Digital Transformation for Automated Test Systems","authors":"Kaleb S. Romero, Jared J. Boyden, W. J. Headrick","doi":"10.1109/AUTOTESTCON47462.2022.9984772","DOIUrl":null,"url":null,"abstract":"Automatic Test Equipment (ATE) have been key in the laboratory testing, calibration, and maintenance of Unit Under Test (UUT) and Line Replaceable Components (LRC), maintaining a high standard in the sustainment of complex systems. In a wide market full of unique capabilities, spanning from legacy systems to cutting-edge technologies, it only makes sense to evolve the ATE world adopting a modular architecture from inception to deployment. A modular mentality applied to every aspect of a system design, shifts away from a rigid perspective and towards a flexible environment where customer ideas and goals can thrive. From utilizing AGILE strategies in execution of design and documentation, taking “vertical slices” on complex designs, utilizing Model-Based Systems Engineering to derive system requirements, using collaborative, cloud-based tools to maximize productivity and shorten program-execution schedules, developing full kit-based solutions, to the virtualization of the ATE design, test and manufacturing plans; All in support of a product that offers confidence during design and execution, maximizes future upgradeability, obsolescence management and field-sustainment, while minimizing non-recurring costs experienced on a traditional, fixed, waterfall ATE design environment. This paper will describe how Digital Transformation in a modular test system makes this possible and enables customers to achieve and maintain success for years to come.","PeriodicalId":298798,"journal":{"name":"2022 IEEE AUTOTESTCON","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE AUTOTESTCON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUTOTESTCON47462.2022.9984772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Automatic Test Equipment (ATE) have been key in the laboratory testing, calibration, and maintenance of Unit Under Test (UUT) and Line Replaceable Components (LRC), maintaining a high standard in the sustainment of complex systems. In a wide market full of unique capabilities, spanning from legacy systems to cutting-edge technologies, it only makes sense to evolve the ATE world adopting a modular architecture from inception to deployment. A modular mentality applied to every aspect of a system design, shifts away from a rigid perspective and towards a flexible environment where customer ideas and goals can thrive. From utilizing AGILE strategies in execution of design and documentation, taking “vertical slices” on complex designs, utilizing Model-Based Systems Engineering to derive system requirements, using collaborative, cloud-based tools to maximize productivity and shorten program-execution schedules, developing full kit-based solutions, to the virtualization of the ATE design, test and manufacturing plans; All in support of a product that offers confidence during design and execution, maximizes future upgradeability, obsolescence management and field-sustainment, while minimizing non-recurring costs experienced on a traditional, fixed, waterfall ATE design environment. This paper will describe how Digital Transformation in a modular test system makes this possible and enables customers to achieve and maintain success for years to come.
自动化测试系统的数字化转换
自动测试设备(ATE)一直是实验室测试、校准和维护被测单元(UUT)和线路可更换组件(LRC)的关键,在复杂系统的维护中保持高标准。在一个充满独特功能的广阔市场中,从遗留系统到尖端技术,只有从开始到部署采用模块化体系结构来发展ATE世界才有意义。模块化的心态应用于系统设计的各个方面,从僵化的角度转向灵活的环境,在这种环境中,客户的想法和目标可以蓬勃发展。从在设计和文档的执行中利用AGILE策略,在复杂的设计上采取“垂直切片”,利用基于模型的系统工程来得出系统需求,使用协作的,基于云的工具来最大化生产力并缩短程序执行时间表,开发基于完整套件的解决方案,到ATE设计,测试和制造计划的虚拟化;所有这些都支持产品在设计和执行过程中提供信心,最大限度地提高未来的可升级性、过时管理和现场维护,同时最大限度地减少传统、固定、瀑布式ATE设计环境中的非重复性成本。本文将描述模块化测试系统中的数字化转型如何实现这一目标,并使客户能够在未来几年取得并保持成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信