{"title":"Emerging Applications on Antennas and Passive Components With Additive Manufacturing","authors":"Guang-Long Huang","doi":"10.1109/ucmmt45316.2018.9015662","DOIUrl":null,"url":null,"abstract":"Additive manufacturing (AM) technology has been attracting increasing interests in the applications of microwave antennas and components. Among a large number of AM techniques that can be categorized by methods of shaping, printing materials, etc., metallic 3-D printing is specialized for constructing structures from metal powders, and is particularly suitable for prototyping geometrically complex waveguide-based components. With metallic 3-D printing, a direct and monolithic integration of waveguide components is possible with smaller tolerances in the fabrication and assembly, and more importantly a significant reduction in the cost of time and labor. This paper presents an overview of recent advances in metallic 3-D printed waveguide-based antennas and passive components developed by the authors' group, with an outlook to future innovative evolutions in the structural design, AM, and post processing techniques.","PeriodicalId":326539,"journal":{"name":"2018 11th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ucmmt45316.2018.9015662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing (AM) technology has been attracting increasing interests in the applications of microwave antennas and components. Among a large number of AM techniques that can be categorized by methods of shaping, printing materials, etc., metallic 3-D printing is specialized for constructing structures from metal powders, and is particularly suitable for prototyping geometrically complex waveguide-based components. With metallic 3-D printing, a direct and monolithic integration of waveguide components is possible with smaller tolerances in the fabrication and assembly, and more importantly a significant reduction in the cost of time and labor. This paper presents an overview of recent advances in metallic 3-D printed waveguide-based antennas and passive components developed by the authors' group, with an outlook to future innovative evolutions in the structural design, AM, and post processing techniques.