Research on Text Classification for Identifying Fake News

Shenhao Zhang, Yihui Wang, Chengxiang Tan
{"title":"Research on Text Classification for Identifying Fake News","authors":"Shenhao Zhang, Yihui Wang, Chengxiang Tan","doi":"10.1109/SPAC46244.2018.8965536","DOIUrl":null,"url":null,"abstract":"In the big data environment, massive news can always lead people to make their own judgments about events happening in society. The wrong guidance of fake news will lead to a negative effect on society. It is necessary to distinguish between real and fake news. In the traditional text categorization method, using the TF-IDF information of the words in the document as the weight matrix and applying it to the classifier. Inevitably, TF-IDF contains limited information, limiting the effect of classification. This paper proposed a method based on TF-IDF and Word2vec for identifying fake news, using SVM to verify its validity.","PeriodicalId":360369,"journal":{"name":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC46244.2018.8965536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In the big data environment, massive news can always lead people to make their own judgments about events happening in society. The wrong guidance of fake news will lead to a negative effect on society. It is necessary to distinguish between real and fake news. In the traditional text categorization method, using the TF-IDF information of the words in the document as the weight matrix and applying it to the classifier. Inevitably, TF-IDF contains limited information, limiting the effect of classification. This paper proposed a method based on TF-IDF and Word2vec for identifying fake news, using SVM to verify its validity.
基于文本分类的假新闻识别研究
在大数据环境下,海量的新闻总是会让人们对社会上正在发生的事件做出自己的判断。假新闻的错误引导会对社会产生负面影响。区分真假新闻是必要的。在传统的文本分类方法中,使用文档中单词的TF-IDF信息作为权重矩阵应用到分类器中。TF-IDF不可避免地包含有限的信息,限制了分类的效果。本文提出了一种基于TF-IDF和Word2vec的假新闻识别方法,并使用SVM对其有效性进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信