Face verification in the wild using similarity in representations

M. Miri
{"title":"Face verification in the wild using similarity in representations","authors":"M. Miri","doi":"10.1109/AISP.2017.8324125","DOIUrl":null,"url":null,"abstract":"In recent years, classification using sparse representation of signals has attracted much attention and has achieved satisfactory results compared to the conventional methods. In this paper, a classification method using sparse representation is proposed for face verification in Labeled Faces in the Wild (LFW) data. The LFW dataset involves high intra-class variations due to the uncontrolled imaging conditions. According to our experimental results, matched and mismatched pairs of the LFW data can be better classified using separate dictionaries for each image of the input pair.","PeriodicalId":386952,"journal":{"name":"2017 Artificial Intelligence and Signal Processing Conference (AISP)","volume":"11 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Artificial Intelligence and Signal Processing Conference (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP.2017.8324125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In recent years, classification using sparse representation of signals has attracted much attention and has achieved satisfactory results compared to the conventional methods. In this paper, a classification method using sparse representation is proposed for face verification in Labeled Faces in the Wild (LFW) data. The LFW dataset involves high intra-class variations due to the uncontrolled imaging conditions. According to our experimental results, matched and mismatched pairs of the LFW data can be better classified using separate dictionaries for each image of the input pair.
在野外使用相似性表征的人脸验证
近年来,利用信号的稀疏表示进行分类受到了广泛的关注,并且与传统方法相比取得了令人满意的结果。本文提出了一种基于稀疏表示的LFW数据人脸验证分类方法。由于不受控制的成像条件,LFW数据集涉及高类内变化。根据我们的实验结果,LFW数据的匹配和不匹配对可以使用单独的字典对输入对的每个图像进行更好的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信