Video super-resolution using low rank matrix completion

Jin Chen, J. Núñez-Yáñez, A. Achim
{"title":"Video super-resolution using low rank matrix completion","authors":"Jin Chen, J. Núñez-Yáñez, A. Achim","doi":"10.1109/ICIP.2013.6738283","DOIUrl":null,"url":null,"abstract":"In this paper, a novel video super-resolution image reconstruction algorithm is proposed. We design a patch-based low rank matrix completion algorithm. The proposed algorithm addresses the problem of generating a high-resolution (HR) image from several low-resolution (LR) images, based on sparse representation and low-rank matrix completion. The approach represents observed LR frames in the form of sparse matrices and rearranges those frames into low dimensional constructions. Experimental results demonstrate that, high-frequency details in the super resolved images are recovered from the LR frames. The gains in terms of PSNR and SSIM are significant.","PeriodicalId":388385,"journal":{"name":"2013 IEEE International Conference on Image Processing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2013.6738283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, a novel video super-resolution image reconstruction algorithm is proposed. We design a patch-based low rank matrix completion algorithm. The proposed algorithm addresses the problem of generating a high-resolution (HR) image from several low-resolution (LR) images, based on sparse representation and low-rank matrix completion. The approach represents observed LR frames in the form of sparse matrices and rearranges those frames into low dimensional constructions. Experimental results demonstrate that, high-frequency details in the super resolved images are recovered from the LR frames. The gains in terms of PSNR and SSIM are significant.
视频超分辨率使用低秩矩阵补全
本文提出了一种新的视频超分辨率图像重建算法。设计了一种基于patch的低秩矩阵补全算法。该算法基于稀疏表示和低秩矩阵补全,解决了从多幅低分辨率图像生成高分辨率图像的问题。该方法以稀疏矩阵的形式表示观测到的LR帧,并将这些帧重新排列成低维结构。实验结果表明,超分辨图像中的高频细节可以从LR帧中恢复出来。在PSNR和SSIM方面的增益是显著的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信