Rate estimation via maximum likelihood parameter estimation: Application in fast mode-selection within the H.264/AVC

K. Minoo, Truong Q. Nguyen
{"title":"Rate estimation via maximum likelihood parameter estimation: Application in fast mode-selection within the H.264/AVC","authors":"K. Minoo, Truong Q. Nguyen","doi":"10.1109/ACSSC.2008.5074837","DOIUrl":null,"url":null,"abstract":"In this paper a novel method to estimate the required bits for representing the coded (quantized) coefficients within a block of natural video sequences is proposed. The proposed method assumes a parameterized probabilistic model for coded data and utilizes a maximum likelihood parameter estimation technique to estimate the model's parameters. The proposed method achieves a robust estimation of the rate based on the estimated probability of each coefficient based on zero order entropy. The rate estimation via maximum likelihood parameter estimation enjoys lower computational complexity, compared to the actual entropy coding of the data. For the purpose of rate estimation we consider a number of options to estimate the parameters of the probabilistic model of coded data. In the context optimal mode selection within the H.264/AVC video codec, the rate estimation method is used to estimate a Lagrangian rate-distortion cost which would be minimized for the optimal mode. The experimental results show that the proposed method considerably reduces the computational complexity while maintaining almost the same rate-distortion coding efficiency compared to mode selection using the actual rate.","PeriodicalId":416114,"journal":{"name":"2008 42nd Asilomar Conference on Signals, Systems and Computers","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 42nd Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2008.5074837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper a novel method to estimate the required bits for representing the coded (quantized) coefficients within a block of natural video sequences is proposed. The proposed method assumes a parameterized probabilistic model for coded data and utilizes a maximum likelihood parameter estimation technique to estimate the model's parameters. The proposed method achieves a robust estimation of the rate based on the estimated probability of each coefficient based on zero order entropy. The rate estimation via maximum likelihood parameter estimation enjoys lower computational complexity, compared to the actual entropy coding of the data. For the purpose of rate estimation we consider a number of options to estimate the parameters of the probabilistic model of coded data. In the context optimal mode selection within the H.264/AVC video codec, the rate estimation method is used to estimate a Lagrangian rate-distortion cost which would be minimized for the optimal mode. The experimental results show that the proposed method considerably reduces the computational complexity while maintaining almost the same rate-distortion coding efficiency compared to mode selection using the actual rate.
基于最大似然参数估计的速率估计:在H.264/AVC快速模式选择中的应用
本文提出了一种在自然视频序列块中估计表示编码(量化)系数所需的比特数的新方法。该方法假设编码数据的参数化概率模型,并利用最大似然参数估计技术对模型参数进行估计。该方法基于零阶熵估计各系数的概率,实现了对速率的鲁棒估计。与实际的数据熵编码相比,通过最大似然参数估计的速率估计具有较低的计算复杂度。为了估计速率,我们考虑了许多选项来估计编码数据的概率模型的参数。在H.264/AVC视频编解码器的最优模式选择中,采用速率估计方法估计拉格朗日率失真代价,该代价使最优模式达到最小。实验结果表明,该方法在保持几乎相同的率失真编码效率的同时,大大降低了计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信