Semantic Scene Models for Visual Localization under Large Viewpoint Changes

J. Li, Zhaoqi Xu, D. Meger, G. Dudek
{"title":"Semantic Scene Models for Visual Localization under Large Viewpoint Changes","authors":"J. Li, Zhaoqi Xu, D. Meger, G. Dudek","doi":"10.1109/CRV.2018.00033","DOIUrl":null,"url":null,"abstract":"We propose an approach for camera pose estimation under large viewpoint changes using only 2D RGB images. This enables a mobile robot to relocalize itself with respect to a previously-visited scene when seeing it again from a completely new vantage point. In order to overcome large appearance changes, we integrate a variety of cues, including object detections, vanishing points, structure from motion, and object-to-object context in order to constrain the camera geometry, while simultaneously estimating the 3D pose of covisible objects represented as bounding cuboids. We propose an efficient sampling-based approach that quickly cuts down the high-dimensional search space, and a robust correspondence algorithm that matches covisible objects via inter-object spatial relationships. We validate our approach using the publicly available Sun3D dataset, in which we demonstrate the ability to handle camera translations of up to 5.9 meters and camera rotations of up to 110 degrees.","PeriodicalId":281779,"journal":{"name":"2018 15th Conference on Computer and Robot Vision (CRV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th Conference on Computer and Robot Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2018.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We propose an approach for camera pose estimation under large viewpoint changes using only 2D RGB images. This enables a mobile robot to relocalize itself with respect to a previously-visited scene when seeing it again from a completely new vantage point. In order to overcome large appearance changes, we integrate a variety of cues, including object detections, vanishing points, structure from motion, and object-to-object context in order to constrain the camera geometry, while simultaneously estimating the 3D pose of covisible objects represented as bounding cuboids. We propose an efficient sampling-based approach that quickly cuts down the high-dimensional search space, and a robust correspondence algorithm that matches covisible objects via inter-object spatial relationships. We validate our approach using the publicly available Sun3D dataset, in which we demonstrate the ability to handle camera translations of up to 5.9 meters and camera rotations of up to 110 degrees.
大视点变化下视觉定位的语义场景模型
我们提出了一种仅使用2D RGB图像进行大视点变化下相机姿态估计的方法。这使得移动机器人能够在从一个全新的有利位置再次看到之前访问过的场景时重新定位自己。为了克服巨大的外观变化,我们整合了各种线索,包括物体检测,消失点,运动结构和物体到物体的上下文,以约束相机几何形状,同时估计以边界长方体表示的共视物体的3D姿态。我们提出了一种高效的基于采样的方法,该方法可以快速减少高维搜索空间,并提出了一种鲁棒的对应算法,该算法通过对象间空间关系匹配共同可见的对象。我们使用公开可用的Sun3D数据集验证了我们的方法,其中我们展示了处理高达5.9米的相机平移和高达110度的相机旋转的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信