Hand Gesture Recognition System Based on Textural Features

Ferhat Roumiassa, S. E. Agab, F. Chelali
{"title":"Hand Gesture Recognition System Based on Textural Features","authors":"Ferhat Roumiassa, S. E. Agab, F. Chelali","doi":"10.1109/ICAEE53772.2022.9962080","DOIUrl":null,"url":null,"abstract":"Gesture is an effective mean of communication between deaf or hearing-impaired people. Designing a hand gesture recognition system involves an efficient characterization step in order to reduce the amount of information contained in the images. We propose two descriptors known as Binary Pattern of Phase Congruency (BPPC) and Monogenic Binary Coding (MBC) to characterize our hand images. Three datasets are used for this purpose, the American, Arabic and dynamic dataset. Support vector Machine SVM and Radial Basis function Neural Network RBF NN are used to build our hand gesture recognition system. 94 to 96% of accuracy was obtained for the three datasets.","PeriodicalId":206584,"journal":{"name":"2022 2nd International Conference on Advanced Electrical Engineering (ICAEE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Advanced Electrical Engineering (ICAEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAEE53772.2022.9962080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gesture is an effective mean of communication between deaf or hearing-impaired people. Designing a hand gesture recognition system involves an efficient characterization step in order to reduce the amount of information contained in the images. We propose two descriptors known as Binary Pattern of Phase Congruency (BPPC) and Monogenic Binary Coding (MBC) to characterize our hand images. Three datasets are used for this purpose, the American, Arabic and dynamic dataset. Support vector Machine SVM and Radial Basis function Neural Network RBF NN are used to build our hand gesture recognition system. 94 to 96% of accuracy was obtained for the three datasets.
基于纹理特征的手势识别系统
手势是聋人或听障人士之间有效的交流手段。设计一个手势识别系统涉及到一个有效的表征步骤,以减少图像中包含的信息量。我们提出了两种描述符,即相位一致性二进制模式(BPPC)和单基因二进制编码(MBC)来描述我们的手图像。三个数据集用于此目的,美国,阿拉伯和动态数据集。采用支持向量机SVM和径向基神经网络RBF神经网络构建手势识别系统。三个数据集的准确率为94 ~ 96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信