Hand gesture recognition using a skeleton-based feature representation with a random regression forest

Shaun J. Canavan, Walter Keyes, Ryan Mccormick, Julie Kunnumpurath, Tanner Hoelzel, L. Yin
{"title":"Hand gesture recognition using a skeleton-based feature representation with a random regression forest","authors":"Shaun J. Canavan, Walter Keyes, Ryan Mccormick, Julie Kunnumpurath, Tanner Hoelzel, L. Yin","doi":"10.1109/ICIP.2017.8296705","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method for automatic hand gesture recognition using a random regression forest with a novel set of feature descriptors created from skeletal data acquired from the Leap Motion Controller. The efficacy of our proposed approach is evaluated on the publicly available University of Padova Microsoft Kinect and Leap Motion dataset, as well as 24 letters of the English alphabet in American Sign Language. The letters that are dynamic (e.g. j and z) are not evaluated. Using a random regression forest to classify the features we achieve 100% accuracy on the University of Padova Microsoft Kinect and Leap Motion dataset. We also constructed an in-house dataset using the 24 static letters of the English alphabet in ASL. A classification rate of 98.36% was achieved on this dataset. We also show that our proposed method outperforms the current state of the art on the University of Padova Microsoft Kinect and Leap Motion dataset.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we propose a method for automatic hand gesture recognition using a random regression forest with a novel set of feature descriptors created from skeletal data acquired from the Leap Motion Controller. The efficacy of our proposed approach is evaluated on the publicly available University of Padova Microsoft Kinect and Leap Motion dataset, as well as 24 letters of the English alphabet in American Sign Language. The letters that are dynamic (e.g. j and z) are not evaluated. Using a random regression forest to classify the features we achieve 100% accuracy on the University of Padova Microsoft Kinect and Leap Motion dataset. We also constructed an in-house dataset using the 24 static letters of the English alphabet in ASL. A classification rate of 98.36% was achieved on this dataset. We also show that our proposed method outperforms the current state of the art on the University of Padova Microsoft Kinect and Leap Motion dataset.
基于骨架特征表示和随机回归森林的手势识别
在本文中,我们提出了一种自动手势识别方法,使用随机回归森林和一组新的特征描述符,这些特征描述符是从Leap运动控制器获得的骨骼数据中创建的。我们提出的方法的有效性在公开可用的帕多瓦大学微软Kinect和Leap Motion数据集以及美国手语中的24个英文字母上进行了评估。动态的字母(例如j和z)不求值。使用随机回归森林对特征进行分类,我们在帕多瓦大学微软Kinect和Leap Motion数据集上实现了100%的准确率。我们还使用美国手语中英文字母表的24个静态字母构建了一个内部数据集。该数据集的分类率达到了98.36%。我们还表明,我们提出的方法在帕多瓦大学微软Kinect和Leap Motion数据集上的表现优于当前最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信