Mixture weight influence on kernel entropy component analysis and semi-supervised learning using the Lasso

Jonas Nordhaug Myhre, R. Jenssen
{"title":"Mixture weight influence on kernel entropy component analysis and semi-supervised learning using the Lasso","authors":"Jonas Nordhaug Myhre, R. Jenssen","doi":"10.1109/MLSP.2012.6349814","DOIUrl":null,"url":null,"abstract":"The aim of this paper is two-fold. First, we show that the newly developed spectral method known as kernel entropy component analysis (kernel ECA) captures cluster structure, which is very important in semi-supervised learning, and we provide an analysis showing how mixture weights influence kernel ECA in a mixture of cluster components setting. Second, we develop a semi-supervised kernel ECA classifier based on the Lasso framework, and report promising results compared to the state-of-the art.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The aim of this paper is two-fold. First, we show that the newly developed spectral method known as kernel entropy component analysis (kernel ECA) captures cluster structure, which is very important in semi-supervised learning, and we provide an analysis showing how mixture weights influence kernel ECA in a mixture of cluster components setting. Second, we develop a semi-supervised kernel ECA classifier based on the Lasso framework, and report promising results compared to the state-of-the art.
混合权值对核熵成分分析和Lasso半监督学习的影响
本文的目的是双重的。首先,我们展示了被称为核熵分量分析(kernel entropy component analysis, ECA)的新开发的谱方法捕获了在半监督学习中非常重要的聚类结构,我们提供了一个分析,展示了混合权重如何影响聚类成分混合设置下的核熵分量分析。其次,我们开发了基于Lasso框架的半监督核ECA分类器,并报告了与当前状态相比有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信