Application of artificial neural network in noise mixed partial discharge recognition

Zhong Zheng, K. Tan
{"title":"Application of artificial neural network in noise mixed partial discharge recognition","authors":"Zhong Zheng, K. Tan","doi":"10.1109/CCECE.2001.933765","DOIUrl":null,"url":null,"abstract":"To test partial discharge (PD) recognition ability under different noise conditions, systemic research is carried out. In a noise-screened high voltage lab and using a high speed, wide-band digital measuring system, different kinds of PD current waveforms are recorded. Noises of different types are investigated. Then the PD signals are immersed into different noises with certain signal-noise ratios (SNR). By applying the segmented time domain data compression method, the features vectors of mixed waveforms are extracted. Employing a backpropagation algorithm, a feedforward triple-layered artificial neural network (ANN) program is generated and optimized. The mixed waveforms are tested and influence of each noise types in different SNR conditions are studied.","PeriodicalId":184523,"journal":{"name":"Canadian Conference on Electrical and Computer Engineering 2001. Conference Proceedings (Cat. No.01TH8555)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Conference on Electrical and Computer Engineering 2001. Conference Proceedings (Cat. No.01TH8555)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2001.933765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To test partial discharge (PD) recognition ability under different noise conditions, systemic research is carried out. In a noise-screened high voltage lab and using a high speed, wide-band digital measuring system, different kinds of PD current waveforms are recorded. Noises of different types are investigated. Then the PD signals are immersed into different noises with certain signal-noise ratios (SNR). By applying the segmented time domain data compression method, the features vectors of mixed waveforms are extracted. Employing a backpropagation algorithm, a feedforward triple-layered artificial neural network (ANN) program is generated and optimized. The mixed waveforms are tested and influence of each noise types in different SNR conditions are studied.
人工神经网络在噪声混合局部放电识别中的应用
为了测试局部放电在不同噪声条件下的识别能力,进行了系统的研究。在屏蔽噪声的高压实验室内,采用高速宽带数字测量系统,记录了不同类型的局部放电电流波形。研究了不同类型的噪声。然后将PD信号浸入具有一定信噪比的不同噪声中。采用分段时域数据压缩方法,提取混合波形的特征向量。采用反向传播算法,生成并优化了前馈三层人工神经网络程序。对混合波形进行了测试,研究了不同信噪比条件下各噪声类型对混合波形的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信