R. Fearing, K. Chiang, M. Dickinson, D. L. Pick, M. Sitti, Joseph Yan
{"title":"Wing transmission for a micromechanical flying insect","authors":"R. Fearing, K. Chiang, M. Dickinson, D. L. Pick, M. Sitti, Joseph Yan","doi":"10.1109/ROBOT.2000.844811","DOIUrl":null,"url":null,"abstract":"Flapping wings provide unmatched manoeuvrability for flying microrobots. Recent advances in modelling insect aerodynamics show that adequate wing rotation at the end of the stroke is essential for generating adequate flight forces. We developed a thorax structure using four bar frames combined with an extensible fan-fold wing to provide adequate wing stroke and rotation. Flow measurements on a scale model of the beating wing show promising aerodynamics. Calculations using a simple resonant mechanical circuit model show that piezoelectric actuators can generate sufficient power, force and stroke to drive the wings at 150 Hz.","PeriodicalId":286422,"journal":{"name":"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"287","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2000.844811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 287
Abstract
Flapping wings provide unmatched manoeuvrability for flying microrobots. Recent advances in modelling insect aerodynamics show that adequate wing rotation at the end of the stroke is essential for generating adequate flight forces. We developed a thorax structure using four bar frames combined with an extensible fan-fold wing to provide adequate wing stroke and rotation. Flow measurements on a scale model of the beating wing show promising aerodynamics. Calculations using a simple resonant mechanical circuit model show that piezoelectric actuators can generate sufficient power, force and stroke to drive the wings at 150 Hz.