{"title":"High-Speed Computation of CRC Codes for FPGAs","authors":"Jakub Cabal, Lukás Kekely, J. Korenek","doi":"10.1109/FPT.2018.00042","DOIUrl":null,"url":null,"abstract":"As the throughput of networks and memory interfaces is on a constant rise, there is a need for ever-faster error-detecting codes. Cyclic redundancy checks (CRC) are a common and widely used to ensure consistency or detect accidental changes of data. We propose a novel FPGA architecture for the computation of the CRC designed for general high-speed data transfers. Its key feature is allowing a processing of multiple independent data packets (transactions) in each clock cycle, what is a necessity for achieving high overall throughput on very wide data buses. Experimental results confirm that the proposed architecture reaches an effective throughput sufficient for utilization in multi-terabit Ethernet networks (over 2 Tbps or over 3000 Mpps) on a single Xilinx UltraScale+ FPGA.","PeriodicalId":434541,"journal":{"name":"2018 International Conference on Field-Programmable Technology (FPT)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2018.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
As the throughput of networks and memory interfaces is on a constant rise, there is a need for ever-faster error-detecting codes. Cyclic redundancy checks (CRC) are a common and widely used to ensure consistency or detect accidental changes of data. We propose a novel FPGA architecture for the computation of the CRC designed for general high-speed data transfers. Its key feature is allowing a processing of multiple independent data packets (transactions) in each clock cycle, what is a necessity for achieving high overall throughput on very wide data buses. Experimental results confirm that the proposed architecture reaches an effective throughput sufficient for utilization in multi-terabit Ethernet networks (over 2 Tbps or over 3000 Mpps) on a single Xilinx UltraScale+ FPGA.