Understanding of Internal Clustering Validation Measures

Yanchi Liu, Zhongmou Li, Hui Xiong, Xuedong Gao, Junjie Wu
{"title":"Understanding of Internal Clustering Validation Measures","authors":"Yanchi Liu, Zhongmou Li, Hui Xiong, Xuedong Gao, Junjie Wu","doi":"10.1109/ICDM.2010.35","DOIUrl":null,"url":null,"abstract":"Clustering validation has long been recognized as one of the vital issues essential to the success of clustering applications. In general, clustering validation can be categorized into two classes, external clustering validation and internal clustering validation. In this paper, we focus on internal clustering validation and present a detailed study of 11 widely used internal clustering validation measures for crisp clustering. From five conventional aspects of clustering, we investigate their validation properties. Experiment results show that S\\_Dbw is the only internal validation measure which performs well in all five aspects, while other measures have certain limitations in different application scenarios.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"851","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 851

Abstract

Clustering validation has long been recognized as one of the vital issues essential to the success of clustering applications. In general, clustering validation can be categorized into two classes, external clustering validation and internal clustering validation. In this paper, we focus on internal clustering validation and present a detailed study of 11 widely used internal clustering validation measures for crisp clustering. From five conventional aspects of clustering, we investigate their validation properties. Experiment results show that S\_Dbw is the only internal validation measure which performs well in all five aspects, while other measures have certain limitations in different application scenarios.
内部聚类验证措施的理解
聚类验证一直被认为是影响聚类应用程序成功的关键问题之一。一般来说,聚类验证可以分为两类,外部聚类验证和内部聚类验证。本文以内部聚类验证为重点,详细研究了11种常用的脆聚类内部聚类验证方法。从聚类的五个常规方面,我们研究了它们的验证特性。实验结果表明,S\_Dbw是唯一在这五个方面都表现良好的内部验证测度,而其他测度在不同的应用场景下都存在一定的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信