{"title":"A channel diversity path metric for dual channel Wireless Body Area networks","authors":"S. Omer, R. Vesilo","doi":"10.1109/ATNAC.2016.7878778","DOIUrl":null,"url":null,"abstract":"Wireless Body Area networks (WBANs) are a subset of wireless sensor networks that interconnect miniaturized nodes with sensor or actuator capabilities in, on, or around a human body. WBANs can operate over a number of different frequency bands such as MICS (Medical Implant Communications system), 2.4 GHz ISM (Industrial Scientific and Medical), UWB (Ultra-Wideband), and HBC (Human Body Communications) bands. Use for dual bands can improve connectivity, throughput and reliability. In this paper we proposed a metric called Weighed Multichannel Hop Count (WMHC) to provide better channel diversity and reduced in interference for inclusion in a multi-channel extension to the Ad Hoc on Demand Distance Vector (AODV) routing protocol for use in WBANs. We used the Castalia simulator to evaluate the metric. We showed that WMHC is a simple method of reducing interference and improving throughput.","PeriodicalId":317649,"journal":{"name":"2016 26th International Telecommunication Networks and Applications Conference (ITNAC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 26th International Telecommunication Networks and Applications Conference (ITNAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATNAC.2016.7878778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Wireless Body Area networks (WBANs) are a subset of wireless sensor networks that interconnect miniaturized nodes with sensor or actuator capabilities in, on, or around a human body. WBANs can operate over a number of different frequency bands such as MICS (Medical Implant Communications system), 2.4 GHz ISM (Industrial Scientific and Medical), UWB (Ultra-Wideband), and HBC (Human Body Communications) bands. Use for dual bands can improve connectivity, throughput and reliability. In this paper we proposed a metric called Weighed Multichannel Hop Count (WMHC) to provide better channel diversity and reduced in interference for inclusion in a multi-channel extension to the Ad Hoc on Demand Distance Vector (AODV) routing protocol for use in WBANs. We used the Castalia simulator to evaluate the metric. We showed that WMHC is a simple method of reducing interference and improving throughput.