Computational intelligent color normalization for wheat plant images to support precision farming

S. B. Sulistyo, W. L. Woo, S. Dlay
{"title":"Computational intelligent color normalization for wheat plant images to support precision farming","authors":"S. B. Sulistyo, W. L. Woo, S. Dlay","doi":"10.1109/ICACI.2016.7449816","DOIUrl":null,"url":null,"abstract":"Image colors are considerably affected by the intensity of the light source. In this paper, we propose a color constancy method using neural networks fusion to normalize images captured under sunlight with a variation of light intensities. A genetic algorithm is also applied to optimize the color normalization. A 24-patch Macbeth color checker is utilized as the reference to normalize the images. The results of our proposed method is superior to other methods, i.e. the conventional gray world and scale-by-max methods, as well as linear model and single neural network method. Furthermore, the proposed method can be used to normalize wheat plant images captured under various light intensities.","PeriodicalId":211040,"journal":{"name":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2016.7449816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Image colors are considerably affected by the intensity of the light source. In this paper, we propose a color constancy method using neural networks fusion to normalize images captured under sunlight with a variation of light intensities. A genetic algorithm is also applied to optimize the color normalization. A 24-patch Macbeth color checker is utilized as the reference to normalize the images. The results of our proposed method is superior to other methods, i.e. the conventional gray world and scale-by-max methods, as well as linear model and single neural network method. Furthermore, the proposed method can be used to normalize wheat plant images captured under various light intensities.
小麦植物图像的计算智能颜色归一化以支持精准农业
图像颜色受光源强度的影响很大。在本文中,我们提出了一种使用神经网络融合的颜色恒常性方法,对光照强度变化的阳光下捕获的图像进行归一化。采用遗传算法对颜色归一化进行优化。使用24块麦克白颜色检查器作为参考,对图像进行规范化。该方法的结果优于传统的灰色世界和最大比例法,也优于线性模型和单神经网络方法。此外,该方法可用于在不同光强下捕获的小麦植物图像的归一化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信