Independent subspace analysis with prior information for fMRI data

Sai Ma, Xi-Lin Li, N. Correa, T. Adalı, V. Calhoun
{"title":"Independent subspace analysis with prior information for fMRI data","authors":"Sai Ma, Xi-Lin Li, N. Correa, T. Adalı, V. Calhoun","doi":"10.1109/ICASSP.2010.5495320","DOIUrl":null,"url":null,"abstract":"Independent component analysis (ICA) has been successfully applied for the analysis of functional magnetic resonance imaging (fMRI) data. However, independence might be too strong a constraint for certain sources. In this paper, we present an independent subspace analysis (ISA) framework that forms independent subspaces among the estimated sources having dependencies by a hierarchial clustering approach and subsequently separates the dependent sources in the task-related subspace using prior information. We study the incorporation of two types of prior information to transform the sources within the task-related subspace: sparsity and task-related time courses. We demonstrate the effectiveness of our proposed method for source separation of multi-subject fMRI data from a visuomotor task. Our results show that physiologically meaningful dependencies among sources can be identified using our subspace approach and the dependent estimated components can be further separated effectively using a subsequent transformation.","PeriodicalId":293333,"journal":{"name":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2010.5495320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Independent component analysis (ICA) has been successfully applied for the analysis of functional magnetic resonance imaging (fMRI) data. However, independence might be too strong a constraint for certain sources. In this paper, we present an independent subspace analysis (ISA) framework that forms independent subspaces among the estimated sources having dependencies by a hierarchial clustering approach and subsequently separates the dependent sources in the task-related subspace using prior information. We study the incorporation of two types of prior information to transform the sources within the task-related subspace: sparsity and task-related time courses. We demonstrate the effectiveness of our proposed method for source separation of multi-subject fMRI data from a visuomotor task. Our results show that physiologically meaningful dependencies among sources can be identified using our subspace approach and the dependent estimated components can be further separated effectively using a subsequent transformation.
基于先验信息的fMRI数据独立子空间分析
独立分量分析(ICA)已成功地应用于功能磁共振成像(fMRI)数据的分析。然而,对于某些来源来说,独立性可能是过于强烈的约束。在本文中,我们提出了一个独立子空间分析(ISA)框架,该框架通过层次聚类方法在具有依赖关系的估计源之间形成独立子空间,然后使用先验信息在任务相关子空间中分离依赖源。我们研究了结合两种类型的先验信息来转换任务相关子空间中的源:稀疏性和任务相关时间过程。我们证明了我们提出的方法对视觉运动任务中多主体fMRI数据的源分离的有效性。我们的研究结果表明,我们的子空间方法可以识别源之间有生理意义的依赖关系,并且可以使用后续转换进一步有效地分离依赖估计分量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信