Mapping Canopy-Level Crop Traits Using Top-of-Atmosphere Sentinel-2 Data in Google Earth Engine

J. Estévez, K. Berger, Matías Salinero-Delgado, L. Pipia, J. Vicent, J. P. Rivera-Caicedo, Matthias Wocher, P. Reyes-Muñoz, G. Tagliabue, M. Boschetti, J. Verrelst
{"title":"Mapping Canopy-Level Crop Traits Using Top-of-Atmosphere Sentinel-2 Data in Google Earth Engine","authors":"J. Estévez, K. Berger, Matías Salinero-Delgado, L. Pipia, J. Vicent, J. P. Rivera-Caicedo, Matthias Wocher, P. Reyes-Muñoz, G. Tagliabue, M. Boschetti, J. Verrelst","doi":"10.31490/9788024846026-15","DOIUrl":null,"url":null,"abstract":"To take advantage of the vast amount of remote sensing data, cloud computing platforms such as Google Earth Engine (GEE) open new possibilities to develop crop trait retrieval models applicable to any corner of the world. In the present study, we implemented hybrid models directly in GEE for processing Sentinel-2 (S2) top-of-atmosphere (TOA) reflectance data into crop traits. To achieve this, a training dataset was generated using the leaf-canopy RTM PROSAIL in combination with the atmospheric model 6SV. Gaussian processes regression (GPR) retrieval models were then established for 4 canopy-level crop traits namely: leaf area index, canopy chlorophyll content, canopy water content and canopy dry matter content. Successful reduction of the training dataset by 78% was achieved using the active learning technique Euclidean distance-based diversity (EBD). The EBD-GPR model showed moderate to good performance against in situ data over an independent study site (Grosseto, Italy). Obtained maps compared against ESA Sentinels' Application Platform (SNAP) vegetation estimates showed high consistency of both retrievals. Finally, local and national scale maps were successfully generated in GEE, with additionally providing uncertainties. In summary, the proposed retrieval workflow demonstrates the possibility of routine processing S2 TOA data into crop trait maps at any place on Earth as required for operational agricultural applications.","PeriodicalId":419801,"journal":{"name":"GIS Ostrava 2022 Earth Observation for Smart City and Smart Region","volume":"259 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIS Ostrava 2022 Earth Observation for Smart City and Smart Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31490/9788024846026-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To take advantage of the vast amount of remote sensing data, cloud computing platforms such as Google Earth Engine (GEE) open new possibilities to develop crop trait retrieval models applicable to any corner of the world. In the present study, we implemented hybrid models directly in GEE for processing Sentinel-2 (S2) top-of-atmosphere (TOA) reflectance data into crop traits. To achieve this, a training dataset was generated using the leaf-canopy RTM PROSAIL in combination with the atmospheric model 6SV. Gaussian processes regression (GPR) retrieval models were then established for 4 canopy-level crop traits namely: leaf area index, canopy chlorophyll content, canopy water content and canopy dry matter content. Successful reduction of the training dataset by 78% was achieved using the active learning technique Euclidean distance-based diversity (EBD). The EBD-GPR model showed moderate to good performance against in situ data over an independent study site (Grosseto, Italy). Obtained maps compared against ESA Sentinels' Application Platform (SNAP) vegetation estimates showed high consistency of both retrievals. Finally, local and national scale maps were successfully generated in GEE, with additionally providing uncertainties. In summary, the proposed retrieval workflow demonstrates the possibility of routine processing S2 TOA data into crop trait maps at any place on Earth as required for operational agricultural applications.
利用谷歌Earth Engine中Top-of-Atmosphere Sentinel-2数据绘制冠层作物性状
为了利用海量的遥感数据,谷歌Earth Engine (GEE)等云计算平台为开发适用于世界任何角落的作物性状检索模型开辟了新的可能性。在本研究中,我们直接在GEE中实现混合模型,将Sentinel-2 (S2)大气顶(TOA)反射率数据处理为作物性状。为了实现这一目标,使用叶片-冠层RTM PROSAIL结合大气模型6SV生成了一个训练数据集。建立了4个冠层作物性状(叶面积指数、冠层叶绿素含量、冠层含水量和冠层干物质含量)的高斯过程回归(GPR)反演模型。使用主动学习技术欧几里得距离多样性(EBD)成功地将训练数据集减少了78%。EBD-GPR模型对独立研究地点(意大利Grosseto)的原位数据显示出中等到良好的性能。将获得的地图与ESA Sentinels的应用平台(SNAP)植被估算值进行比较,两者的检索结果具有很高的一致性。最后,在GEE中成功生成了地方和国家比例尺地图,但也提供了额外的不确定性。综上所述,所提出的检索工作流程证明了在地球上任何地方将S2 TOA数据常规处理成作物性状图的可能性,以满足农业操作应用的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信