Muhammad Munim Zabidi, Kah Liang Wong, U. U. Sheikh, Shahidatul Sadiah Abdul Manan, M. A. Hamzah
{"title":"Bird Sound Detection with Binarized Neural Networks","authors":"Muhammad Munim Zabidi, Kah Liang Wong, U. U. Sheikh, Shahidatul Sadiah Abdul Manan, M. A. Hamzah","doi":"10.11113/elektrika.v21n1.349","DOIUrl":null,"url":null,"abstract":"By analysing the behavioural patterns of bird species in a specific region, researchers can predict future changes in the ecosystem. Many birds can be identified by their sounds, and autonomous recording units (ARUs) can capture real-time bird vocalisations. The recordings are analysed to see if there are any bird sounds. The sound of a bird can be used for further analysis, such as determining its species. Bird sound detection using Deep Neural Networks (DNNs) has been shown to outperform traditional methods. DNNs, however, necessitate a lot of storage and processing power. The use of Binarized Neural Networks (BNNs) is one of the most recent approaches to overcoming this limitation. In this paper, a bird sound detection architecture based on the XNOR-Net variant of BNN is used. Performance analysis of XNOR-Net in terms of the number of hidden layers used was performed, and the configuration with the highest accuracy was built. The system was tested using Xeno-Canto and UrbanSound8K datasets to represent bird and non-bird sounds, respectively. We achieved 96.06 per cent training accuracy and 94.08 per cent validation accuracy. We believe that BNNs are an effective method for detecting bird sounds.","PeriodicalId":312612,"journal":{"name":"ELEKTRIKA- Journal of Electrical Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELEKTRIKA- Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/elektrika.v21n1.349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
By analysing the behavioural patterns of bird species in a specific region, researchers can predict future changes in the ecosystem. Many birds can be identified by their sounds, and autonomous recording units (ARUs) can capture real-time bird vocalisations. The recordings are analysed to see if there are any bird sounds. The sound of a bird can be used for further analysis, such as determining its species. Bird sound detection using Deep Neural Networks (DNNs) has been shown to outperform traditional methods. DNNs, however, necessitate a lot of storage and processing power. The use of Binarized Neural Networks (BNNs) is one of the most recent approaches to overcoming this limitation. In this paper, a bird sound detection architecture based on the XNOR-Net variant of BNN is used. Performance analysis of XNOR-Net in terms of the number of hidden layers used was performed, and the configuration with the highest accuracy was built. The system was tested using Xeno-Canto and UrbanSound8K datasets to represent bird and non-bird sounds, respectively. We achieved 96.06 per cent training accuracy and 94.08 per cent validation accuracy. We believe that BNNs are an effective method for detecting bird sounds.