ANALYSIS OF THE EFFECTIVENESS OF APPLYING THE FREQUENCY-CONTEXT CLASSIFICATION ALGORITHM TO TEXTS OF DIFFERENT STYLES

M. Chaika, I. Buneev, V. Velichko
{"title":"ANALYSIS OF THE EFFECTIVENESS OF APPLYING THE FREQUENCY-CONTEXT CLASSIFICATION ALGORITHM TO TEXTS OF DIFFERENT STYLES","authors":"M. Chaika, I. Buneev, V. Velichko","doi":"10.34220/mamsp_174-178","DOIUrl":null,"url":null,"abstract":"This article discusses the application of the frequency-context classification algorithm to texts of various styles. The main features of different styles that affect the efficiency of the algo-rithm are highlighted. It is proved that the method of selecting the subject of the text using the fre-quency-context classification algorithm works best in relation to scientific and legal documents and, in its current form, is practically inapplicable for literary texts. This makes the task of modifying the algorithm to determine the subject of literary texts relevant.","PeriodicalId":113054,"journal":{"name":"Materials of the All-Russian Scientific and Practical Conference \"Modern aspects of modeling systems and processes\"","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials of the All-Russian Scientific and Practical Conference \"Modern aspects of modeling systems and processes\"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34220/mamsp_174-178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article discusses the application of the frequency-context classification algorithm to texts of various styles. The main features of different styles that affect the efficiency of the algo-rithm are highlighted. It is proved that the method of selecting the subject of the text using the fre-quency-context classification algorithm works best in relation to scientific and legal documents and, in its current form, is practically inapplicable for literary texts. This makes the task of modifying the algorithm to determine the subject of literary texts relevant.
频率-上下文分类算法对不同风格文本的有效性分析
本文讨论了频率-上下文分类算法在不同文体文本中的应用。重点分析了影响算法效率的不同样式的主要特征。事实证明,使用频率-上下文分类算法选择文本主题的方法在科学和法律文件方面效果最好,而以其目前的形式,实际上不适用于文学文本。这使得修改算法以确定文学文本主题的任务变得相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信