Luca Di Liello, Daniele Bonadiman, Alessandro Moschitti, Cristina Giannone, A. Favalli, Raniero Romagnoli
{"title":"Cross-Language Transformer Adaptation for Frequently Asked Questions","authors":"Luca Di Liello, Daniele Bonadiman, Alessandro Moschitti, Cristina Giannone, A. Favalli, Raniero Romagnoli","doi":"10.4000/books.aaccademia.8463","DOIUrl":null,"url":null,"abstract":"Transfer learning has been proven to be effective, especially when data for the target domain/task is scarce. Sometimes data for a similar task is only available in another language because it may be very specific. In this paper, we explore the use of machine-translated data to transfer models on a related domain. Specifically, we transfer models from the question duplication task (QDT) to similar FAQ selection tasks. The source domain is the wellknown English Quora dataset, while the target domain is a collection of small Italian datasets for real case scenarios consisting of FAQ groups retrieved by pivoting on common answers. Our results show great improvements in the zero-shot learning setting and modest improvements using the standard transfer approach for direct in-domain adaptation 1.","PeriodicalId":300279,"journal":{"name":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/books.aaccademia.8463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Transfer learning has been proven to be effective, especially when data for the target domain/task is scarce. Sometimes data for a similar task is only available in another language because it may be very specific. In this paper, we explore the use of machine-translated data to transfer models on a related domain. Specifically, we transfer models from the question duplication task (QDT) to similar FAQ selection tasks. The source domain is the wellknown English Quora dataset, while the target domain is a collection of small Italian datasets for real case scenarios consisting of FAQ groups retrieved by pivoting on common answers. Our results show great improvements in the zero-shot learning setting and modest improvements using the standard transfer approach for direct in-domain adaptation 1.