Accelerating Interactive Human-like Manipulation Learning with GPU-based Simulation and High-quality Demonstrations

Malte Mosbach, Kara Moraw, Sven Behnke
{"title":"Accelerating Interactive Human-like Manipulation Learning with GPU-based Simulation and High-quality Demonstrations","authors":"Malte Mosbach, Kara Moraw, Sven Behnke","doi":"10.1109/Humanoids53995.2022.10000161","DOIUrl":null,"url":null,"abstract":"Dexterous manipulation with anthropomorphic robot hands remains a challenging problem in robotics because of the high-dimensional state and action spaces and complex contacts. Nevertheless, skillful closed-loop manipulation is required to enable humanoid robots to operate in unstructured real-world environments. Reinforcement learning (RL) has traditionally imposed enormous interaction data requirements for optimizing such complex control problems. We introduce a new framework that leverages recent advances in GPU-based simulation along with the strength of imitation learning in guiding policy search towards promising behaviors to make RL training feasible in these domains. To this end, we present an immersive virtual reality teleoperation interface designed for interactive human-like manipulation on contact rich tasks and a suite of manipulation environments inspired by tasks of daily living. Finally, we demonstrate the complementary strengths of massively parallel RL and imitation learning, yielding robust and natural behaviors. Videos of trained policies, our source code, and the collected demonstration datasets are available at https://maltemosbach.github.io/interactive_human_like_manipulation/.","PeriodicalId":180816,"journal":{"name":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids53995.2022.10000161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Dexterous manipulation with anthropomorphic robot hands remains a challenging problem in robotics because of the high-dimensional state and action spaces and complex contacts. Nevertheless, skillful closed-loop manipulation is required to enable humanoid robots to operate in unstructured real-world environments. Reinforcement learning (RL) has traditionally imposed enormous interaction data requirements for optimizing such complex control problems. We introduce a new framework that leverages recent advances in GPU-based simulation along with the strength of imitation learning in guiding policy search towards promising behaviors to make RL training feasible in these domains. To this end, we present an immersive virtual reality teleoperation interface designed for interactive human-like manipulation on contact rich tasks and a suite of manipulation environments inspired by tasks of daily living. Finally, we demonstrate the complementary strengths of massively parallel RL and imitation learning, yielding robust and natural behaviors. Videos of trained policies, our source code, and the collected demonstration datasets are available at https://maltemosbach.github.io/interactive_human_like_manipulation/.
利用基于gpu的仿真和高质量演示加速交互式类人操作学习
由于拟人机械手的高维状态和动作空间以及复杂的接触,使得拟人机械手的灵巧操作一直是机器人技术中的一个难题。然而,要使人形机器人在非结构化的现实环境中运行,需要熟练的闭环操作。传统上,强化学习(RL)对优化此类复杂控制问题施加了巨大的交互数据需求。我们引入了一个新的框架,该框架利用基于gpu的模拟的最新进展以及模仿学习的强度来指导有前途行为的策略搜索,使强化学习训练在这些领域可行。为此,我们提出了一个沉浸式虚拟现实远程操作界面,旨在对接触丰富的任务进行交互式类人操作,以及一套受日常生活任务启发的操作环境。最后,我们展示了大规模并行强化学习和模仿学习的互补优势,产生稳健和自然的行为。训练策略的视频、我们的源代码和收集的演示数据集可在https://maltemosbach.github.io/interactive_human_like_manipulation/上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信