Exponentiation-based key generation using noncommutative groups

V. Sidelnikov
{"title":"Exponentiation-based key generation using noncommutative groups","authors":"V. Sidelnikov","doi":"10.1109/ISIT.1994.395112","DOIUrl":null,"url":null,"abstract":"Diffie and Hellman (1976) proposed to use exponentiation module a prime for constructing the key generation system. A security of this system is based on the supposed hardness of the following problem (A): given /spl eta//sup x/ and /spl eta//sup y/ compute /spl eta//sup xy/. Sidelnikov, Cherepniov, and Yaschenko (1993) considered a system based on the noncommutative group G. We assume that G is a certain subgroup of the group GL/sub n/(F/sub p/) of n/spl times/n matrices over the finite field F/sub p/. We consider the representation of the group GL/sub n/(F/sub p/) with the aid of exponentiation in a subsidiary cyclic group U of order p and investigate of the security of the resulting key generation systems. The group of F/sub q/-rational point on elliptic curve and the subgroup U= of the multiplicative group of the subsidiary finite field F/sub q/, where p|q-1, /spl eta//spl isin/F/sub q/, /spl eta//sup p/=1, /spl eta//spl ne/1, are the examples of the group U. We consider the group /spl Uscr/ of affine transformations of the field F/sub p/ which is isomorphic to a certain subgroup of GL/sub 2/(F/sub p/). In this case the security of the key generation system under certain conjecture (which simplifies the task of adversary) is based on the hardness of the following problem (B): given /spl eta//sup x/,/spl eta//sup y/,/spl beta//sup z/ compute /spl eta//sup xy/z/. It seems impossible reduce this problem to several Diffie-Hellman problems (A). The system being considered uses a universal key, which does not exist in the Diffie-Hellman system and is presumably a new element for key generation systems. The knowledge of k is supposed to be a necessary condition to compute the private key.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.395112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Diffie and Hellman (1976) proposed to use exponentiation module a prime for constructing the key generation system. A security of this system is based on the supposed hardness of the following problem (A): given /spl eta//sup x/ and /spl eta//sup y/ compute /spl eta//sup xy/. Sidelnikov, Cherepniov, and Yaschenko (1993) considered a system based on the noncommutative group G. We assume that G is a certain subgroup of the group GL/sub n/(F/sub p/) of n/spl times/n matrices over the finite field F/sub p/. We consider the representation of the group GL/sub n/(F/sub p/) with the aid of exponentiation in a subsidiary cyclic group U of order p and investigate of the security of the resulting key generation systems. The group of F/sub q/-rational point on elliptic curve and the subgroup U= of the multiplicative group of the subsidiary finite field F/sub q/, where p|q-1, /spl eta//spl isin/F/sub q/, /spl eta//sup p/=1, /spl eta//spl ne/1, are the examples of the group U. We consider the group /spl Uscr/ of affine transformations of the field F/sub p/ which is isomorphic to a certain subgroup of GL/sub 2/(F/sub p/). In this case the security of the key generation system under certain conjecture (which simplifies the task of adversary) is based on the hardness of the following problem (B): given /spl eta//sup x/,/spl eta//sup y/,/spl beta//sup z/ compute /spl eta//sup xy/z/. It seems impossible reduce this problem to several Diffie-Hellman problems (A). The system being considered uses a universal key, which does not exist in the Diffie-Hellman system and is presumably a new element for key generation systems. The knowledge of k is supposed to be a necessary condition to compute the private key.<>
使用非交换群生成基于幂次的密钥
Diffie和Hellman(1976)提出使用幂模a素数构造密钥生成系统。该系统的安全性基于以下问题(A)的假定硬度:给定/spl eta//sup x/和/spl eta//sup y/ compute /spl eta//sup xy/。Sidelnikov, Cherepniov和Yaschenko(1993)考虑了一个基于非交换群G的系统。我们假设G是有限域F/sub p/上n/spl乘以/n个矩阵的群GL/sub n/(F/sub p/)的一个子群。考虑了群GL/sub n/(F/sub p/)在p阶子循环群U上的幂表示,并研究了所得到的密钥生成系统的安全性。椭圆曲线上的F/sub q/-有理点群和辅助有限域F/sub q/的乘群U=,其中p|q-1, /spl eta//spl isin/F/sub q/, /spl eta//sup p/=1, /spl eta//spl ne/1,是U群的例子。我们考虑与GL/sub 2/(F/sub p/)同构的域F/sub p/的仿射变换群/spl Uscr/。在这种情况下,密钥生成系统在一定猜想下的安全性(这简化了对手的任务)是基于以下问题(B)的硬度:给定/spl eta//sup x/,/spl eta//sup y/,/spl beta//sup z/计算/spl eta//sup xy/z/。似乎不可能将这个问题简化为几个Diffie-Hellman问题(A)。所考虑的系统使用一个通用密钥,该密钥在Diffie-Hellman系统中不存在,并且可能是密钥生成系统的新元素。已知k是计算私钥的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信