Less is More: Bitcoin Volatility Forecast Using Feature Selection and Deep Learning Models

Haiping Wang, Xing Zhou
{"title":"Less is More: Bitcoin Volatility Forecast Using Feature Selection and Deep Learning Models","authors":"Haiping Wang, Xing Zhou","doi":"10.1109/INDIN51773.2022.9976100","DOIUrl":null,"url":null,"abstract":"Utilizing a large set of variables that include transaction information, public attention, blockchain information, macroeconomic variables and technical indicators, we compare different deep learning models with baseline methods, such as statistical and machine learning models, on Bitcoin volatility forecast. We find that feature selection approach strongly affects model performance. The results show that a simple Long Short-Term Memory (LSTM) model outperforms other models when using individual feature selection method.","PeriodicalId":359190,"journal":{"name":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51773.2022.9976100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing a large set of variables that include transaction information, public attention, blockchain information, macroeconomic variables and technical indicators, we compare different deep learning models with baseline methods, such as statistical and machine learning models, on Bitcoin volatility forecast. We find that feature selection approach strongly affects model performance. The results show that a simple Long Short-Term Memory (LSTM) model outperforms other models when using individual feature selection method.
少即是多:使用特征选择和深度学习模型预测比特币波动
利用包括交易信息、公众关注、区块链信息、宏观经济变量和技术指标在内的大量变量,我们将不同的深度学习模型与基线方法(如统计和机器学习模型)进行比特币波动预测的比较。我们发现特征选择方法对模型性能有很大影响。结果表明,使用单个特征选择方法时,简单的长短期记忆(LSTM)模型优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信