L. Cordeiro, B. Fischer, Huan Chen, Joao Marques-Silva
{"title":"Semiformal Verification of Embedded Software in Medical Devices Considering Stringent Hardware Constraints","authors":"L. Cordeiro, B. Fischer, Huan Chen, Joao Marques-Silva","doi":"10.1109/ICESS.2009.82","DOIUrl":null,"url":null,"abstract":"In recent days, the complexity of software has increased significantly in embedded products in such a way that the verification of Embedded Software (ESW) now plays an important role to ensure the product's quality. Embedded systems engineers usually face the problems of verifying properties that have to meet the application's deadline, access the memory region, handle concurrency, and control the hardware registers. This work proposes a semiformal verification approach that combines dynamic and static verification to stress and cover exhaustively the state space of the system. We perform a case study on embedded software used in the medical devices domain. We conclude that the proposed approach improves the coverage and reduces substantially the verification time.","PeriodicalId":335217,"journal":{"name":"2009 International Conference on Embedded Software and Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Embedded Software and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICESS.2009.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41
Abstract
In recent days, the complexity of software has increased significantly in embedded products in such a way that the verification of Embedded Software (ESW) now plays an important role to ensure the product's quality. Embedded systems engineers usually face the problems of verifying properties that have to meet the application's deadline, access the memory region, handle concurrency, and control the hardware registers. This work proposes a semiformal verification approach that combines dynamic and static verification to stress and cover exhaustively the state space of the system. We perform a case study on embedded software used in the medical devices domain. We conclude that the proposed approach improves the coverage and reduces substantially the verification time.