The Isabelle ENIGMA

Z. Goertzel, Jan Jakubruv, C. Kaliszyk, Miroslav Olvs'ak, Jelle Piepenbrock, J. Urban
{"title":"The Isabelle ENIGMA","authors":"Z. Goertzel, Jan Jakubruv, C. Kaliszyk, Miroslav Olvs'ak, Jelle Piepenbrock, J. Urban","doi":"10.48550/arXiv.2205.01981","DOIUrl":null,"url":null,"abstract":"We significantly improve the performance of the E automated theorem prover on the Isabelle Sledgehammer problems by combining learning and theorem proving in several ways. In particular, we develop targeted versions of the ENIGMA guidance for the Isabelle problems, targeted versions of neural premise selection, and targeted strategies for E. The methods are trained in several iterations over hundreds of thousands untyped and typed first-order problems extracted from Isabelle. Our final best single-strategy ENIGMA and premise selection system improves the best previous version of E by 25.3% in 15 seconds, outperforming also all other previous ATP and SMT systems.","PeriodicalId":296683,"journal":{"name":"International Conference on Interactive Theorem Proving","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Interactive Theorem Proving","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.01981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We significantly improve the performance of the E automated theorem prover on the Isabelle Sledgehammer problems by combining learning and theorem proving in several ways. In particular, we develop targeted versions of the ENIGMA guidance for the Isabelle problems, targeted versions of neural premise selection, and targeted strategies for E. The methods are trained in several iterations over hundreds of thousands untyped and typed first-order problems extracted from Isabelle. Our final best single-strategy ENIGMA and premise selection system improves the best previous version of E by 25.3% in 15 seconds, outperforming also all other previous ATP and SMT systems.
伊莎贝尔ENIGMA
通过将学习和定理证明结合在一起,我们显著提高了E自动定理证明器在Isabelle Sledgehammer问题上的性能。特别是,我们为Isabelle问题开发了目标版本的ENIGMA指导,目标版本的神经前提选择和e的目标策略。这些方法是在从Isabelle提取的数十万个非类型化和类型化一阶问题的几次迭代中训练的。我们最终的最佳单策略ENIGMA和前提选择系统在15秒内将E的最佳版本提高了25.3%,也优于所有其他先前的ATP和SMT系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信