Hardware efficient, neuromorphic dendritically enhanced readout for liquid state machines

Subhrajit Roy, A. Basu, Shaista Hussain
{"title":"Hardware efficient, neuromorphic dendritically enhanced readout for liquid state machines","authors":"Subhrajit Roy, A. Basu, Shaista Hussain","doi":"10.1109/BioCAS.2013.6679699","DOIUrl":null,"url":null,"abstract":"In this article, we describe a new neuro-inspired, hardware-friendly readout stage for the liquid state machine (LSM) that is suitable for on-sensor computing in resource constrained applications. Compared to the state of the art parallel perceptron readout (PPR), our readout architecture and learning algorithm can attain better performance with significantly less synaptic resources making it attractive for VLSI implementation. Inspired by the nonlinear properties of dendrites in biological neurons, our readout stage incorporates neurons having multiple dendrites with a lumped nonlinearity (two compartment model). The number of synaptic connections on each branch is significantly lower than the total number of connections from the liquid neurons and the learning algorithm tries to find the best `combination' of input connections on each branch to reduce the error. Hence, the learning involves network rewiring (NRW) of the readout network similar to structural plasticity observed in its biological counterparts. We show that even while using binary synapses, our method can achieve 2.4 - 3.3 times less error compared to PPR using same number of high resolution synapses. Conversely, PPR requires 40-60 times more synapses to attain error levels comparable to our method.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2013.6679699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this article, we describe a new neuro-inspired, hardware-friendly readout stage for the liquid state machine (LSM) that is suitable for on-sensor computing in resource constrained applications. Compared to the state of the art parallel perceptron readout (PPR), our readout architecture and learning algorithm can attain better performance with significantly less synaptic resources making it attractive for VLSI implementation. Inspired by the nonlinear properties of dendrites in biological neurons, our readout stage incorporates neurons having multiple dendrites with a lumped nonlinearity (two compartment model). The number of synaptic connections on each branch is significantly lower than the total number of connections from the liquid neurons and the learning algorithm tries to find the best `combination' of input connections on each branch to reduce the error. Hence, the learning involves network rewiring (NRW) of the readout network similar to structural plasticity observed in its biological counterparts. We show that even while using binary synapses, our method can achieve 2.4 - 3.3 times less error compared to PPR using same number of high resolution synapses. Conversely, PPR requires 40-60 times more synapses to attain error levels comparable to our method.
硬件效率,神经形态树突状增强读出液体状态机
在本文中,我们描述了一种新的神经启发的、硬件友好的液体状态机(LSM)读出阶段,它适用于资源受限应用中的传感器计算。与最先进的并行感知器读出(PPR)相比,我们的读出架构和学习算法可以以更少的突触资源获得更好的性能,使其对VLSI实现具有吸引力。受生物神经元树突非线性特性的启发,我们的读出阶段结合了具有集中非线性(双室模型)的多个树突的神经元。每个分支上的突触连接数量明显低于液体神经元的连接总数,学习算法试图找到每个分支上输入连接的最佳“组合”,以减少误差。因此,学习涉及读出网络的网络重新布线(NRW),类似于在其生物对应物中观察到的结构可塑性。我们表明,即使使用二进制突触,与使用相同数量的高分辨率突触的PPR相比,我们的方法可以实现2.4 - 3.3倍的误差。相反,PPR需要40-60倍的突触才能达到与我们的方法相当的误差水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信