A physically based approach in retrieving vegetation Leaf Area Index from Landsat surface reflectance data

S. Ganguly, R. Nemani, Y. Knyazikhin, Weile Wang, H. Hashimoto, P. Votava, A. Michaelis, C. Milesi, J. Dungan, F. Melton, R. Myneni
{"title":"A physically based approach in retrieving vegetation Leaf Area Index from Landsat surface reflectance data","authors":"S. Ganguly, R. Nemani, Y. Knyazikhin, Weile Wang, H. Hashimoto, P. Votava, A. Michaelis, C. Milesi, J. Dungan, F. Melton, R. Myneni","doi":"10.1109/WHISPERS.2010.5594875","DOIUrl":null,"url":null,"abstract":"In this study, we aim to generate global 30-m Leaf Area Index (LAI) from Landsat surface reflectance data using the radiative transfer theory of canopy spectral invariants which facilitates parameterization of the canopy spectral bidirectional reflectance factor (BRF). Furthermore, canopy spectral invariants introduce an efficient way for incorporating multiple bands for retrieving LAI. We incorporate a 3-band retrieval scheme including the Red, NIR and SWIR bands, the SWIR band being specifically useful in low LAI regions and thus compensating for background effects. The initial results have satisfactory agreement with MODIS LAI, although with spatially more detailed structure and variability. A future exercise will be to introduce field measured LAI estimates to minimize the differences between model-simulated LAI's and in-situ observations.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this study, we aim to generate global 30-m Leaf Area Index (LAI) from Landsat surface reflectance data using the radiative transfer theory of canopy spectral invariants which facilitates parameterization of the canopy spectral bidirectional reflectance factor (BRF). Furthermore, canopy spectral invariants introduce an efficient way for incorporating multiple bands for retrieving LAI. We incorporate a 3-band retrieval scheme including the Red, NIR and SWIR bands, the SWIR band being specifically useful in low LAI regions and thus compensating for background effects. The initial results have satisfactory agreement with MODIS LAI, although with spatially more detailed structure and variability. A future exercise will be to introduce field measured LAI estimates to minimize the differences between model-simulated LAI's and in-situ observations.
基于物理的Landsat地表反射率数据反演植被叶面积指数方法
在这项研究中,我们的目标是利用地表反射率数据,利用冠层光谱不变量的辐射传递理论,生成全球30 m叶面积指数(LAI),从而促进冠层光谱双向反射因子(BRF)的参数化。此外,冠层光谱不变量引入了一种整合多波段的有效方法来检索LAI。我们采用了一个3波段检索方案,包括红波段、近红外波段和SWIR波段,SWIR波段在低LAI区域特别有用,因此可以补偿背景效应。初步结果与MODIS LAI具有较好的一致性,但在空间结构和变异性上更为细致。未来的一项工作将是引入实地测量的LAI估计值,以尽量减少模式模拟的LAI与现场观测值之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信