S. Ganguly, R. Nemani, Y. Knyazikhin, Weile Wang, H. Hashimoto, P. Votava, A. Michaelis, C. Milesi, J. Dungan, F. Melton, R. Myneni
{"title":"A physically based approach in retrieving vegetation Leaf Area Index from Landsat surface reflectance data","authors":"S. Ganguly, R. Nemani, Y. Knyazikhin, Weile Wang, H. Hashimoto, P. Votava, A. Michaelis, C. Milesi, J. Dungan, F. Melton, R. Myneni","doi":"10.1109/WHISPERS.2010.5594875","DOIUrl":null,"url":null,"abstract":"In this study, we aim to generate global 30-m Leaf Area Index (LAI) from Landsat surface reflectance data using the radiative transfer theory of canopy spectral invariants which facilitates parameterization of the canopy spectral bidirectional reflectance factor (BRF). Furthermore, canopy spectral invariants introduce an efficient way for incorporating multiple bands for retrieving LAI. We incorporate a 3-band retrieval scheme including the Red, NIR and SWIR bands, the SWIR band being specifically useful in low LAI regions and thus compensating for background effects. The initial results have satisfactory agreement with MODIS LAI, although with spatially more detailed structure and variability. A future exercise will be to introduce field measured LAI estimates to minimize the differences between model-simulated LAI's and in-situ observations.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this study, we aim to generate global 30-m Leaf Area Index (LAI) from Landsat surface reflectance data using the radiative transfer theory of canopy spectral invariants which facilitates parameterization of the canopy spectral bidirectional reflectance factor (BRF). Furthermore, canopy spectral invariants introduce an efficient way for incorporating multiple bands for retrieving LAI. We incorporate a 3-band retrieval scheme including the Red, NIR and SWIR bands, the SWIR band being specifically useful in low LAI regions and thus compensating for background effects. The initial results have satisfactory agreement with MODIS LAI, although with spatially more detailed structure and variability. A future exercise will be to introduce field measured LAI estimates to minimize the differences between model-simulated LAI's and in-situ observations.