{"title":"Improving DBMS Performance through Diverse Redundancy","authors":"Vladimir Stankovic, P. Popov","doi":"10.1109/SRDS.2006.27","DOIUrl":null,"url":null,"abstract":"Database replication is widely used to improve both fault tolerance and DBMS performance. Non-diverse database replication has a significant limitation - it is effective against crash failures only. Diverse redundancy is an effective mechanism of tolerating a wider range of failures, including many non-crash failures. However it has not been adopted in practice because many see DBMS performance as the main concern. In this paper we show experimental evidence that diverse redundancy (diverse replication) can bring benefits in terms of DBMS performance, too. We report on experimental results with an optimistic architecture built with two diverse DBMSs under a load derived from TPC-C benchmark, which show that a diverse pair performs faster not only than non-diverse pairs but also than the individual copies of the DBMSs used. This result is important because it shows potential for DBMS performance better than anything achievable with the available off-the-shelf servers","PeriodicalId":164765,"journal":{"name":"2006 25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2006.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Database replication is widely used to improve both fault tolerance and DBMS performance. Non-diverse database replication has a significant limitation - it is effective against crash failures only. Diverse redundancy is an effective mechanism of tolerating a wider range of failures, including many non-crash failures. However it has not been adopted in practice because many see DBMS performance as the main concern. In this paper we show experimental evidence that diverse redundancy (diverse replication) can bring benefits in terms of DBMS performance, too. We report on experimental results with an optimistic architecture built with two diverse DBMSs under a load derived from TPC-C benchmark, which show that a diverse pair performs faster not only than non-diverse pairs but also than the individual copies of the DBMSs used. This result is important because it shows potential for DBMS performance better than anything achievable with the available off-the-shelf servers