{"title":"Elasto-Plastic Beam Afloat on Water Subjected to Waves","authors":"K. Iijima, Akira Tatsumi, M. Fujikubo","doi":"10.1115/OMAE2018-78646","DOIUrl":null,"url":null,"abstract":"This paper addresses development of a mathematical model which describes the behavior of an elasto-plastic beam afloat on water surface. The mathematical model is valid for predicting the collapse of a Very Large Floating Structure (VLFS) subjected to extreme wave-induced vertical bending moment. It is a follow-up of the previous work in which the collapse behavior of a VLFS is pursued by adopting a segmented beam approach. In this research, the whole VLFS is modelled with elasto-plastic beam elements. The hydrodynamic behavior is modeled by using Rankine source panel method based on time-domain potential theory. It is shown that the elasto-plastic beam approach gives almost the same result as the segmented beam approach for predicting the one-element collapse behavior. The elastoplastic beam approach is extensively used to predict the progressive collapse spread over multiple sections, which cannot be followed by the segmented beam approach.","PeriodicalId":106551,"journal":{"name":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2018-78646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper addresses development of a mathematical model which describes the behavior of an elasto-plastic beam afloat on water surface. The mathematical model is valid for predicting the collapse of a Very Large Floating Structure (VLFS) subjected to extreme wave-induced vertical bending moment. It is a follow-up of the previous work in which the collapse behavior of a VLFS is pursued by adopting a segmented beam approach. In this research, the whole VLFS is modelled with elasto-plastic beam elements. The hydrodynamic behavior is modeled by using Rankine source panel method based on time-domain potential theory. It is shown that the elasto-plastic beam approach gives almost the same result as the segmented beam approach for predicting the one-element collapse behavior. The elastoplastic beam approach is extensively used to predict the progressive collapse spread over multiple sections, which cannot be followed by the segmented beam approach.