Elasto-Plastic Beam Afloat on Water Subjected to Waves

K. Iijima, Akira Tatsumi, M. Fujikubo
{"title":"Elasto-Plastic Beam Afloat on Water Subjected to Waves","authors":"K. Iijima, Akira Tatsumi, M. Fujikubo","doi":"10.1115/OMAE2018-78646","DOIUrl":null,"url":null,"abstract":"This paper addresses development of a mathematical model which describes the behavior of an elasto-plastic beam afloat on water surface. The mathematical model is valid for predicting the collapse of a Very Large Floating Structure (VLFS) subjected to extreme wave-induced vertical bending moment. It is a follow-up of the previous work in which the collapse behavior of a VLFS is pursued by adopting a segmented beam approach. In this research, the whole VLFS is modelled with elasto-plastic beam elements. The hydrodynamic behavior is modeled by using Rankine source panel method based on time-domain potential theory. It is shown that the elasto-plastic beam approach gives almost the same result as the segmented beam approach for predicting the one-element collapse behavior. The elastoplastic beam approach is extensively used to predict the progressive collapse spread over multiple sections, which cannot be followed by the segmented beam approach.","PeriodicalId":106551,"journal":{"name":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2018-78646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper addresses development of a mathematical model which describes the behavior of an elasto-plastic beam afloat on water surface. The mathematical model is valid for predicting the collapse of a Very Large Floating Structure (VLFS) subjected to extreme wave-induced vertical bending moment. It is a follow-up of the previous work in which the collapse behavior of a VLFS is pursued by adopting a segmented beam approach. In this research, the whole VLFS is modelled with elasto-plastic beam elements. The hydrodynamic behavior is modeled by using Rankine source panel method based on time-domain potential theory. It is shown that the elasto-plastic beam approach gives almost the same result as the segmented beam approach for predicting the one-element collapse behavior. The elastoplastic beam approach is extensively used to predict the progressive collapse spread over multiple sections, which cannot be followed by the segmented beam approach.
受波浪作用的水上弹塑性梁
本文建立了一个描述浮在水面上的弹塑性梁的数学模型。该数学模型可用于预测超大型浮体结构在极端波浪垂直弯矩作用下的倒塌。这是先前的工作的后续,其中采用分段光束的方法来追求VLFS的崩溃行为。在本研究中,采用弹塑性梁单元对整个VLFS进行建模。采用基于时域势理论的朗肯源面板法对其水动力特性进行了建模。结果表明,弹塑性梁法与分段梁法在预测单单元倒塌行为方面的结果几乎相同。弹塑性梁法被广泛应用于预测多断面的渐进式倒塌,而分段梁法无法进行这种预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信