Jianhua Zhang, K. Prabakar, Adarsh Hasandka, S. Alam, Yazhou Jiang, B. Hodge, D. Gao
{"title":"Power and Communications Hardware-In-the-Loop CPS Architecture and Platform for DER Monitoring and Control Applications","authors":"Jianhua Zhang, K. Prabakar, Adarsh Hasandka, S. Alam, Yazhou Jiang, B. Hodge, D. Gao","doi":"10.1109/SmartGridComm51999.2021.9631992","DOIUrl":null,"url":null,"abstract":"The rapid growth of distributed energy resources (DERs) has prompted increasing interest in the monitoring and control of DERs through hybrid smart grid communications. The deployment of communications and computation has transformed the traditional physical power grid into a smart cyber-physical system (CPS). To fully understand the interdependence of physical grid and cyber networks, this study designed a power and communications hardware-in-the-loop (PCommHIL) CPS architecture. This architecture enables the flexible verification of DER monitoring and control with hybrid communications architectures and internet protocols. Design, development and case study of a PCommHIL testbed for the DER coordination are discussed in detail, and the proposed platform integrates DER devices, advanced metering infrastructures (AMIs), and a suite of hybrid communications network for distribution automation applications. Case study on DER situational awareness and Volt-Var control validates the efficacy of this proposed PCommHIL platform with hybrid communications designs. Results show that the home area network (HAN) communication technologies play a critical role in hybrid designs and it is the bottleneck for DER applications. High performance communication technologies are highly recommended to be applied in the HAN for enhanced monitoring and real-time control of DERs.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9631992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The rapid growth of distributed energy resources (DERs) has prompted increasing interest in the monitoring and control of DERs through hybrid smart grid communications. The deployment of communications and computation has transformed the traditional physical power grid into a smart cyber-physical system (CPS). To fully understand the interdependence of physical grid and cyber networks, this study designed a power and communications hardware-in-the-loop (PCommHIL) CPS architecture. This architecture enables the flexible verification of DER monitoring and control with hybrid communications architectures and internet protocols. Design, development and case study of a PCommHIL testbed for the DER coordination are discussed in detail, and the proposed platform integrates DER devices, advanced metering infrastructures (AMIs), and a suite of hybrid communications network for distribution automation applications. Case study on DER situational awareness and Volt-Var control validates the efficacy of this proposed PCommHIL platform with hybrid communications designs. Results show that the home area network (HAN) communication technologies play a critical role in hybrid designs and it is the bottleneck for DER applications. High performance communication technologies are highly recommended to be applied in the HAN for enhanced monitoring and real-time control of DERs.