A brief note on minimax optimal trees

L.E. Stanfel
{"title":"A brief note on minimax optimal trees","authors":"L.E. Stanfel","doi":"10.1016/0020-0271(74)90023-0","DOIUrl":null,"url":null,"abstract":"<div><p>The paper addresses the problem of finding doubly-chained tree structures for data storage which are best in the sense of minimizing maximum search time as opposed to the usual objective of minimizing average search time.</p><p>The feasibility of pursuing the latter invariably rests upon assuming a uniform distribution of inquiries, which is often not a valid assumption. As a result, some situations might be treated more appropriately by seeking solutions that minimize maximum search times. It is shown that for the case of equally costly horizontal and vertical search steps, the solution found for minimizing the average is at the same time a minimax solution. In the more general case, that is not necessarily so, but a minimax solution is easily found.</p></div>","PeriodicalId":100670,"journal":{"name":"Information Storage and Retrieval","volume":"10 7","pages":"Page 279"},"PeriodicalIF":0.0000,"publicationDate":"1974-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0020-0271(74)90023-0","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Storage and Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0020027174900230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper addresses the problem of finding doubly-chained tree structures for data storage which are best in the sense of minimizing maximum search time as opposed to the usual objective of minimizing average search time.

The feasibility of pursuing the latter invariably rests upon assuming a uniform distribution of inquiries, which is often not a valid assumption. As a result, some situations might be treated more appropriately by seeking solutions that minimize maximum search times. It is shown that for the case of equally costly horizontal and vertical search steps, the solution found for minimizing the average is at the same time a minimax solution. In the more general case, that is not necessarily so, but a minimax solution is easily found.

关于极大极小最优树的简要说明
本文解决了寻找数据存储的双链树结构的问题,这种结构在最小化最大搜索时间的意义上是最好的,而不是通常的最小化平均搜索时间的目标。追求后者的可行性总是建立在假设调查的均匀分布的基础上,而这通常不是一个有效的假设。因此,通过寻求最小化最大搜索时间的解决方案可能会更合适地处理某些情况。结果表明,当水平搜索和垂直搜索的代价相等时,求平均值的最小解同时是极大极小解。在更一般的情况下,这并不一定如此,但极大极小解是很容易找到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信