Study on Adsorption of Nickel and Methylene Blue in Aqueous Solution by Magnetic Carboxylate-Rich Carbon

Doan Van Dat, Nguyen Hoai Thuong, Tran Thi Kieu Ngan, Le Thi Thanh Nhi, Dao My Uyen, Tran Thi Huong, Cong Hong Hanh, Le Van Thuan
{"title":"Study on Adsorption of Nickel and Methylene Blue in Aqueous Solution by Magnetic Carboxylate-Rich Carbon","authors":"Doan Van Dat, Nguyen Hoai Thuong, Tran Thi Kieu Ngan, Le Thi Thanh Nhi, Dao My Uyen, Tran Thi Huong, Cong Hong Hanh, Le Van Thuan","doi":"10.25073/2588-1094/vnuees.4586","DOIUrl":null,"url":null,"abstract":"In this study, magnetic carboxylate-rich carbon material (Fe3O4@CRC) was synthesized via a low-temperature carbonization method and applied as an adsorbent for adsorption of Ni(II) ions and methylene blue (MB) in aqueous solution. The synthesized Fe3O4@CRC was characterized by various techniques (XRD, FTIR, FE-SEM, TEM, EDX, VSM, and BET). The adsorption kinetics, isotherms, thermodynamics, and the effects of key adsorption factors, including the pH value, initial adsorbate concentration, contact time, adsorbent dose and temperature were investigated in detail. The results showed that Fe3O4@CRC exhibited a high adsorption capacity for MB and Ni(II) with the maximum adsorption capacity of 187.26 mg/g and 106.75 mg/g, respectively. The adsorption of MB and Ni(II) on Fe3O4@CRC was a spontaneous and endothermic process, and was best described with the first-order kinetic model, Freundlich (for MB) and Langmuir (for Ni(II)) isotherm models. In addition, Fe3O4@CRC could maintain a high adsorption capacity after many consecutive cycles. Therefore, the Fe3O4@CRC material can be used as a highly efficient adsorbent for the removal of heavy metals and dyes from wastewater due to the advantages of high adsorption performance, easy separation, and good reusability. \n ","PeriodicalId":247618,"journal":{"name":"VNU Journal of Science: Earth and Environmental Sciences","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Earth and Environmental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1094/vnuees.4586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, magnetic carboxylate-rich carbon material (Fe3O4@CRC) was synthesized via a low-temperature carbonization method and applied as an adsorbent for adsorption of Ni(II) ions and methylene blue (MB) in aqueous solution. The synthesized Fe3O4@CRC was characterized by various techniques (XRD, FTIR, FE-SEM, TEM, EDX, VSM, and BET). The adsorption kinetics, isotherms, thermodynamics, and the effects of key adsorption factors, including the pH value, initial adsorbate concentration, contact time, adsorbent dose and temperature were investigated in detail. The results showed that Fe3O4@CRC exhibited a high adsorption capacity for MB and Ni(II) with the maximum adsorption capacity of 187.26 mg/g and 106.75 mg/g, respectively. The adsorption of MB and Ni(II) on Fe3O4@CRC was a spontaneous and endothermic process, and was best described with the first-order kinetic model, Freundlich (for MB) and Langmuir (for Ni(II)) isotherm models. In addition, Fe3O4@CRC could maintain a high adsorption capacity after many consecutive cycles. Therefore, the Fe3O4@CRC material can be used as a highly efficient adsorbent for the removal of heavy metals and dyes from wastewater due to the advantages of high adsorption performance, easy separation, and good reusability.  
磁性富羧酸碳对水溶液中镍和亚甲基蓝的吸附研究
本研究通过低温碳化法合成了磁性富羧酸碳材料(Fe3O4@CRC),并将其作为吸附剂用于吸附水溶液中的Ni(II)离子和亚甲基蓝(MB)。通过XRD、FTIR、FE-SEM、TEM、EDX、VSM、BET等多种技术对合成的Fe3O4@CRC进行了表征。考察了吸附动力学、等温线、热力学以及pH值、初始吸附浓度、接触时间、吸附剂剂量和温度等关键吸附因素对吸附性能的影响。结果表明,Fe3O4@CRC对MB和Ni(II)具有较高的吸附能力,最大吸附量分别为187.26 mg/g和106.75 mg/g。在Fe3O4@CRC上吸附MB和Ni(II)是一个自发的吸热过程,可以用一级动力学模型Freundlich (MB)和Langmuir (Ni(II))等温模型来描述。此外,Fe3O4@CRC在多次连续循环后仍能保持较高的吸附量。因此,Fe3O4@CRC材料具有吸附性能高、易于分离、可重复使用等优点,可作为废水中重金属和染料的高效吸附剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信