A Kernel Spectral Angle Mapper algorithm for remote sensing image classification

Xiaofang Liu, Chun Yang
{"title":"A Kernel Spectral Angle Mapper algorithm for remote sensing image classification","authors":"Xiaofang Liu, Chun Yang","doi":"10.1109/CISP.2013.6745277","DOIUrl":null,"url":null,"abstract":"A Kernel Spectral Angle Mapper (KSAM) algorithm is proposed to deal better with the nonlinear classification problem of the remote sensing image. The so-called KSAM algorithm is achieved by introducing the kernel method into the standard Spectral Angle Mapper (SAM) algorithm. Experimental results indicate that the classification accuracy of the KSAM algorithm is superior to one of the SAM algorithm in the remote sensing image classification. However the kernel parameters of the polynomial and sigmoid kernel functions of the algorithm are excessively sensitive. A narrow bound of the kernel parameters in the polynomial and sigmoid kernel functions can be chosen for the optimal classification of the remote sensing image. The classification performance of the Radial Basis Function (RBF) kernel function is superior to one of the polynomial and sigmoid kernel functions. A wide bound of the kernel parameter in the RBF kernel function can be chosen for the optimal classification of the remote sensing image in the KSAM algorithm.","PeriodicalId":442320,"journal":{"name":"2013 6th International Congress on Image and Signal Processing (CISP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Congress on Image and Signal Processing (CISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2013.6745277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

A Kernel Spectral Angle Mapper (KSAM) algorithm is proposed to deal better with the nonlinear classification problem of the remote sensing image. The so-called KSAM algorithm is achieved by introducing the kernel method into the standard Spectral Angle Mapper (SAM) algorithm. Experimental results indicate that the classification accuracy of the KSAM algorithm is superior to one of the SAM algorithm in the remote sensing image classification. However the kernel parameters of the polynomial and sigmoid kernel functions of the algorithm are excessively sensitive. A narrow bound of the kernel parameters in the polynomial and sigmoid kernel functions can be chosen for the optimal classification of the remote sensing image. The classification performance of the Radial Basis Function (RBF) kernel function is superior to one of the polynomial and sigmoid kernel functions. A wide bound of the kernel parameter in the RBF kernel function can be chosen for the optimal classification of the remote sensing image in the KSAM algorithm.
一种用于遥感图像分类的核光谱角映射算法
为了更好地解决遥感图像的非线性分类问题,提出了一种核谱角映射算法(KSAM)。所谓的KSAM算法是通过在标准谱角映射(SAM)算法中引入核方法来实现的。实验结果表明,KSAM算法在遥感图像分类中的分类精度优于SAM算法之一。但该算法的多项式核函数和s型核函数的核参数过于敏感。选取多项式核函数和s型核函数中核参数的窄界,对遥感图像进行最优分类。径向基函数(RBF)核函数的分类性能优于多项式核函数和sigmoid核函数。在KSAM算法中,可以选择RBF核函数中核参数的宽界来对遥感图像进行最优分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信