Formalization of Fractional Flow Component in Higher-Order Logic Theorem Proving

Chunna Zhao, Murong Jiang, Yaqun Huang
{"title":"Formalization of Fractional Flow Component in Higher-Order Logic Theorem Proving","authors":"Chunna Zhao, Murong Jiang, Yaqun Huang","doi":"10.1115/detc2019-97209","DOIUrl":null,"url":null,"abstract":"\n Fractional calculus is a powerful tool for dealing with complex systems, and fractional flow component can effectively reflect the nonlinear gradual change of rheology in vibration state. Besides, higher-order logic theorem proving is a formal method for specification and verification. This paper, accordingly, presents a higher-order logic formalization of fractional flow component based on fractional calculus Caputo definition. The relationship between fractional order differential and integer order differential is verified according to fractional calculus Caputo definition in higher-order logic theorem proving, where fluid mechanics fractional flow component is then formally analyzed.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fractional calculus is a powerful tool for dealing with complex systems, and fractional flow component can effectively reflect the nonlinear gradual change of rheology in vibration state. Besides, higher-order logic theorem proving is a formal method for specification and verification. This paper, accordingly, presents a higher-order logic formalization of fractional flow component based on fractional calculus Caputo definition. The relationship between fractional order differential and integer order differential is verified according to fractional calculus Caputo definition in higher-order logic theorem proving, where fluid mechanics fractional flow component is then formally analyzed.
高阶逻辑定理证明中分数流分量的形式化
分数阶微积分是处理复杂系统的有力工具,分数阶流动分量能有效反映振动状态下流变学的非线性渐进变化。此外,高阶逻辑定理证明是一种形式化的说明和验证方法。基于分数阶微积分的Caputo定义,给出了分数阶流分量的高阶逻辑形式化。根据分数阶微积分在高阶逻辑定理证明中的Caputo定义,验证了分数阶微分与整数阶微分的关系,并形式化地分析了流体力学分数阶流分量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信