A Prototype for Credit Card Fraud Management: Industry Paper

A. Artikis, Nikos Katzouris, Ivo Correia, Chris Baber, Natan Morar, Inna Skarbovsky, Fabiana Fournier, G. Paliouras
{"title":"A Prototype for Credit Card Fraud Management: Industry Paper","authors":"A. Artikis, Nikos Katzouris, Ivo Correia, Chris Baber, Natan Morar, Inna Skarbovsky, Fabiana Fournier, G. Paliouras","doi":"10.1145/3093742.3093912","DOIUrl":null,"url":null,"abstract":"To prevent problems and capitalise on opportunities before they even occur, the research project SPEEDD proposed a methodology, and developed a prototype for proactive event-driven decisionmaking. We present the application of this methodology to credit card fraud management. The machine learning component of the SPEEDD prototype supports the online construction of fraud patterns, allowing it to efficiently adapt to the continuously changing fraud types. Moreover, the user interface of the prototype enables fraud analysts to make the most out of the results of automation (complex event processing) and thus reach informed decisions. Unlike most academic research on credit card fraud management, the assessment of the prototype (components) is based on representative transaction datasets, allowing for a realistic evaluation.","PeriodicalId":325666,"journal":{"name":"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems","volume":"55 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3093742.3093912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

To prevent problems and capitalise on opportunities before they even occur, the research project SPEEDD proposed a methodology, and developed a prototype for proactive event-driven decisionmaking. We present the application of this methodology to credit card fraud management. The machine learning component of the SPEEDD prototype supports the online construction of fraud patterns, allowing it to efficiently adapt to the continuously changing fraud types. Moreover, the user interface of the prototype enables fraud analysts to make the most out of the results of automation (complex event processing) and thus reach informed decisions. Unlike most academic research on credit card fraud management, the assessment of the prototype (components) is based on representative transaction datasets, allowing for a realistic evaluation.
信用卡诈骗管理的原型:工业论文
为了在问题发生之前预防问题并利用机会,研究项目SPEEDD提出了一种方法,并开发了一个主动事件驱动决策的原型。我们提出了这种方法的信用卡欺诈管理的应用。SPEEDD原型的机器学习组件支持在线构建欺诈模式,使其能够有效地适应不断变化的欺诈类型。此外,原型的用户界面使欺诈分析人员能够充分利用自动化(复杂事件处理)的结果,从而做出明智的决策。与大多数关于信用卡欺诈管理的学术研究不同,原型(组件)的评估基于代表性的交易数据集,允许进行现实的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信