Diagnosis of depression by behavioural signals: a multimodal approach

N. Cummins, Jyoti Joshi, Abhinav Dhall, V. Sethu, Roland Göcke, J. Epps
{"title":"Diagnosis of depression by behavioural signals: a multimodal approach","authors":"N. Cummins, Jyoti Joshi, Abhinav Dhall, V. Sethu, Roland Göcke, J. Epps","doi":"10.1145/2512530.2512535","DOIUrl":null,"url":null,"abstract":"Quantifying behavioural changes in depression using affective computing techniques is the first step in developing an objective diagnostic aid, with clinical utility, for clinical depression. As part of the AVEC 2013 Challenge, we present a multimodal approach for the Depression Sub-Challenge using a GMM-UBM system with three different kernels for the audio subsystem and Space Time Interest Points in a Bag-of-Words approach for the vision subsystem. These are then fused at the feature level to form the combined AV system. Key results include the strong performance of acoustic audio features and the bag-of-words visual features in predicting an individual's level of depression using regression. Interestingly, in the context of the small amount of literature on the subject, is that our feature level multimodal fusion technique is able to outperform both the audio and visual challenge baselines.","PeriodicalId":182988,"journal":{"name":"Proceedings of the 3rd ACM international workshop on Audio/visual emotion challenge","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"115","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd ACM international workshop on Audio/visual emotion challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2512530.2512535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 115

Abstract

Quantifying behavioural changes in depression using affective computing techniques is the first step in developing an objective diagnostic aid, with clinical utility, for clinical depression. As part of the AVEC 2013 Challenge, we present a multimodal approach for the Depression Sub-Challenge using a GMM-UBM system with three different kernels for the audio subsystem and Space Time Interest Points in a Bag-of-Words approach for the vision subsystem. These are then fused at the feature level to form the combined AV system. Key results include the strong performance of acoustic audio features and the bag-of-words visual features in predicting an individual's level of depression using regression. Interestingly, in the context of the small amount of literature on the subject, is that our feature level multimodal fusion technique is able to outperform both the audio and visual challenge baselines.
行为信号诊断抑郁症:多模式方法
使用情感计算技术对抑郁症的行为变化进行量化,是为临床抑郁症开发具有临床实用性的客观诊断辅助手段的第一步。作为AVEC 2013挑战赛的一部分,我们为抑郁子挑战赛提出了一种多模式方法,使用GMM-UBM系统,音频子系统使用三个不同的内核,视觉子系统使用词袋方法中的时空兴趣点。然后在特征级将它们融合以形成组合的AV系统。主要结果包括声学音频特征和词袋视觉特征在使用回归预测个体抑郁水平方面的强大表现。有趣的是,在关于该主题的少量文献的背景下,我们的特征级多模态融合技术能够优于音频和视觉挑战基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信