{"title":"Process skew: fingerprinting the process for anomaly detection in industrial control systems","authors":"Chuadhry Mujeeb Ahmed, J. Prakash, Rizwan Qadeer, Anand Agrawal, Jianying Zhou","doi":"10.1145/3395351.3399364","DOIUrl":null,"url":null,"abstract":"In an Industrial Control System (ICS), its complex network of sensors, actuators and controllers have raised security concerns. In this paper, we proposed a technique called Process Skew that uses the small deviations in the ICS process (herein called as a process fingerprint) for anomaly detection. The process fingerprint appears as noise in sensor measurements due to the process fluctuations. Such a fingerprint is unique to a process due to the intrinsic operational constraints of the physical process. We validated the proposed scheme using the data from a real-world water treatment testbed. Our results show that we can effectively identify a process based on its fingerprint, and detect process anomaly with a very low false-positive rate.","PeriodicalId":165929,"journal":{"name":"Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks","volume":"18 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3395351.3399364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
In an Industrial Control System (ICS), its complex network of sensors, actuators and controllers have raised security concerns. In this paper, we proposed a technique called Process Skew that uses the small deviations in the ICS process (herein called as a process fingerprint) for anomaly detection. The process fingerprint appears as noise in sensor measurements due to the process fluctuations. Such a fingerprint is unique to a process due to the intrinsic operational constraints of the physical process. We validated the proposed scheme using the data from a real-world water treatment testbed. Our results show that we can effectively identify a process based on its fingerprint, and detect process anomaly with a very low false-positive rate.