Automatic emotion detection in speech using mel frequency cesptral coefficients

S. Bedoya-Jaramillo, E. Belalcázar-Bolaños, T. Villa-Cañas, J. Orozco-Arroyave, J. D. Arias-Londoño, J. Vargas-Bonilla
{"title":"Automatic emotion detection in speech using mel frequency cesptral coefficients","authors":"S. Bedoya-Jaramillo, E. Belalcázar-Bolaños, T. Villa-Cañas, J. Orozco-Arroyave, J. D. Arias-Londoño, J. Vargas-Bonilla","doi":"10.1109/STSIVA.2012.6340558","DOIUrl":null,"url":null,"abstract":"Emotional states produce physiological alterations in the vocal tract introducing variability in the acoustic parameters of speech. Emotion recognition in speech can be used in human-machine interaction applications, speaker verification, analysis of neurological disorders and psychological diagnostic tools. This paper proposes the use of Mel Frequency Cesptral Coefficients (MFCC) for automatic detection of emotions in running speech. Experiments were conducted on the Berlin emotional speech database for a three- class problem (anger, boredom and neutral emotional states). In order to evaluate the discrimination ability of the features three different classifiers were implemented: k-nearest neighbor, Bayesian Linear and quadratic. The highest accuracy results are obtained when neutral and anger emotions are evaluated.","PeriodicalId":383297,"journal":{"name":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","volume":"10863 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2012.6340558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Emotional states produce physiological alterations in the vocal tract introducing variability in the acoustic parameters of speech. Emotion recognition in speech can be used in human-machine interaction applications, speaker verification, analysis of neurological disorders and psychological diagnostic tools. This paper proposes the use of Mel Frequency Cesptral Coefficients (MFCC) for automatic detection of emotions in running speech. Experiments were conducted on the Berlin emotional speech database for a three- class problem (anger, boredom and neutral emotional states). In order to evaluate the discrimination ability of the features three different classifiers were implemented: k-nearest neighbor, Bayesian Linear and quadratic. The highest accuracy results are obtained when neutral and anger emotions are evaluated.
基于mel频率谱系数的语音情感自动检测
情绪状态会在声道中产生生理上的改变,从而导致语音声学参数的变化。语音中的情感识别可用于人机交互应用、说话人验证、神经系统疾病分析和心理诊断工具。本文提出了利用Mel频域系数(MFCC)自动检测运行语音中的情绪。在柏林情绪语音数据库上对愤怒、无聊和中性情绪状态这三个类别的问题进行了实验。为了评估特征的识别能力,实现了三种不同的分类器:k近邻分类器、贝叶斯线性分类器和二次分类器。当评估中性和愤怒情绪时,获得的结果准确性最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信