Information theoretic multivariate change detection for multisensory information processing in Internet of Things

Lev Faivishevsky
{"title":"Information theoretic multivariate change detection for multisensory information processing in Internet of Things","authors":"Lev Faivishevsky","doi":"10.1109/ICASSP.2016.7472879","DOIUrl":null,"url":null,"abstract":"Internet of Things (IoT) is one of the main technological trends in the recent years. It allows machine-to-machine communication over the internet. Almost each device may transmit information from its sensors over the web to enable centralized insights derivation in an appropriate cloud architecture. In this paper we review analytical aspects of the sensory information processing. We emphasize the importance of multisensory approach, in which the joint distribution of all sensors values of a device is used to derive insights out of the stream of sensory data. We introduce a novel information theoretic multivariate change detection method based on k-nearest neighbor (kNN) estimation. The algorithm is designed and implemented to satisfy the requirements of IoT for fast online parallel multisensory information processing. We provide a numerical evidence of the validity of the proposed method on simulated and real world data.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Internet of Things (IoT) is one of the main technological trends in the recent years. It allows machine-to-machine communication over the internet. Almost each device may transmit information from its sensors over the web to enable centralized insights derivation in an appropriate cloud architecture. In this paper we review analytical aspects of the sensory information processing. We emphasize the importance of multisensory approach, in which the joint distribution of all sensors values of a device is used to derive insights out of the stream of sensory data. We introduce a novel information theoretic multivariate change detection method based on k-nearest neighbor (kNN) estimation. The algorithm is designed and implemented to satisfy the requirements of IoT for fast online parallel multisensory information processing. We provide a numerical evidence of the validity of the proposed method on simulated and real world data.
面向物联网多感官信息处理的信息论多元变化检测
物联网(IoT)是近年来的主要技术趋势之一。它允许通过互联网进行机器对机器的通信。几乎每个设备都可以通过网络从传感器传输信息,从而在适当的云架构中实现集中的见解派生。本文就感官信息加工的分析方面作一综述。我们强调多感官方法的重要性,其中设备的所有传感器值的联合分布用于从感官数据流中获得见解。提出了一种新的基于k近邻估计的信息论多元变化检测方法。该算法是为满足物联网对快速在线并行多感官信息处理的要求而设计和实现的。我们在模拟和真实世界的数据上提供了数值证据,证明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信