{"title":"A Compositional Cost Model for the λ-calculus","authors":"J. Laird","doi":"10.1109/LICS52264.2021.9470567","DOIUrl":null,"url":null,"abstract":"We describe a (time) cost model for the (call-by-value) λ-calculus based on a natural presentation of its game semantics: the cost of computing a finite approximant to the denotation of a term (its evaluation tree) is the size of its smallest derivation in the semantics. This measure has an optimality property enabling compositional reasoning about cost bounds: for any term A, context C[_] and approximants a and c to the trees of A and C[A], the cost of computing c from C[A] is no more than the cost of computing a from A and c from C[a].Although the natural semantics on which it is based is nondeterministic, our cost model is reasonable: we describe a deterministic algorithm for recognizing evaluation tree approximants which satisfies it (up to a constant factor overhead) on a Random Access Machine. This requires an implementation of the λv-calculus on the RAM which is completely lazy: compositionality of costs entails that work done to evaluate any part of a term cannot be duplicated. This is achieved by a novel implementation of graph reduction for nameless explicit substitutions, to which we compile the λv-calculus via a series of linear cost reductions.","PeriodicalId":174663,"journal":{"name":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"435 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS52264.2021.9470567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We describe a (time) cost model for the (call-by-value) λ-calculus based on a natural presentation of its game semantics: the cost of computing a finite approximant to the denotation of a term (its evaluation tree) is the size of its smallest derivation in the semantics. This measure has an optimality property enabling compositional reasoning about cost bounds: for any term A, context C[_] and approximants a and c to the trees of A and C[A], the cost of computing c from C[A] is no more than the cost of computing a from A and c from C[a].Although the natural semantics on which it is based is nondeterministic, our cost model is reasonable: we describe a deterministic algorithm for recognizing evaluation tree approximants which satisfies it (up to a constant factor overhead) on a Random Access Machine. This requires an implementation of the λv-calculus on the RAM which is completely lazy: compositionality of costs entails that work done to evaluate any part of a term cannot be duplicated. This is achieved by a novel implementation of graph reduction for nameless explicit substitutions, to which we compile the λv-calculus via a series of linear cost reductions.