Machine Learning for Android Scareware Detection

S. Bagui, Hunter Brock
{"title":"Machine Learning for Android Scareware Detection","authors":"S. Bagui, Hunter Brock","doi":"10.4018/jitr.298326","DOIUrl":null,"url":null,"abstract":"With the steady rise in the use of smartphones, specifically android smartphones, there is an ongoing need to build strong Intrusion Detection Systems to protect ourselves from malicious software attacks, especially on Android smartphones. This work focuses on a sub-group of android malware, scareware. The novelty of this work lies in being able to detect the various scareware families individually using a small number of network attributes, determined by a recursive feature elimination process based on information gain. No work has yet been done on analyzing the scareware families individually. Results of this work show that the number of bytes initially sent back and forth, packet size, amount of time between flows and flow duration are the most important attributes that would be needed to classify a scareware attack. Three classifiers, Decision Tree, Naïve Bayes and OneR, were used for classification. The highest average classification accuracy (79.5%) was achieved by the Decision Tree classifier with a minimum of 44 attributes.","PeriodicalId":296080,"journal":{"name":"J. Inf. Technol. Res.","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Technol. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jitr.298326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

With the steady rise in the use of smartphones, specifically android smartphones, there is an ongoing need to build strong Intrusion Detection Systems to protect ourselves from malicious software attacks, especially on Android smartphones. This work focuses on a sub-group of android malware, scareware. The novelty of this work lies in being able to detect the various scareware families individually using a small number of network attributes, determined by a recursive feature elimination process based on information gain. No work has yet been done on analyzing the scareware families individually. Results of this work show that the number of bytes initially sent back and forth, packet size, amount of time between flows and flow duration are the most important attributes that would be needed to classify a scareware attack. Three classifiers, Decision Tree, Naïve Bayes and OneR, were used for classification. The highest average classification accuracy (79.5%) was achieved by the Decision Tree classifier with a minimum of 44 attributes.
Android恶意软件检测的机器学习
随着智能手机(特别是android智能手机)使用的稳步增长,我们需要构建强大的入侵检测系统来保护自己免受恶意软件的攻击,尤其是在android智能手机上。这项工作的重点是android恶意软件的一个子组,恐吓软件。这项工作的新颖之处在于能够使用少量网络属性单独检测各种恐吓软件家族,由基于信息增益的递归特征消除过程确定。目前还没有单独分析恐吓软件家族的工作。这项工作的结果表明,最初来回发送的字节数,数据包大小,流之间的时间量和流持续时间是对恐吓软件攻击进行分类所需的最重要的属性。使用决策树、Naïve贝叶斯和OneR三种分类器进行分类。具有最少44个属性的决策树分类器达到了最高的平均分类准确率(79.5%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信