Edge-bipancyclicity in conditional edge-faulty k-ary n-cubes

Shiying Wang, Shurong Zhang
{"title":"Edge-bipancyclicity in conditional edge-faulty k-ary n-cubes","authors":"Shiying Wang, Shurong Zhang","doi":"10.1051/ita/2019003","DOIUrl":null,"url":null,"abstract":"The class of k-ary n-cubes represents the most commonly used interconnection topology for parallel and distributed computing systems. In this paper, we consider the faulty k-ary n-cube with even k ≥ 4 and n ≥ 2 such that each vertex of the k-ary n-cube is incident with at least two healthy edges. Based on this requirement, we investigate the fault-tolerant capabilities of the k-ary n-cube with respect to the edge-bipancyclicity. We prove that in the k-ary n-cube Qnk, every healthy edge is contained in fault-free cycles of even lengths from 6 to |V(Qnk)|, even if the Qnk has up to 4n − 5 edge faults and our result is optimal with respect to the number of edge faults tolerated.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2019003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The class of k-ary n-cubes represents the most commonly used interconnection topology for parallel and distributed computing systems. In this paper, we consider the faulty k-ary n-cube with even k ≥ 4 and n ≥ 2 such that each vertex of the k-ary n-cube is incident with at least two healthy edges. Based on this requirement, we investigate the fault-tolerant capabilities of the k-ary n-cube with respect to the edge-bipancyclicity. We prove that in the k-ary n-cube Qnk, every healthy edge is contained in fault-free cycles of even lengths from 6 to |V(Qnk)|, even if the Qnk has up to 4n − 5 edge faults and our result is optimal with respect to the number of edge faults tolerated.
条件边缺陷k元n立方的边双环性
k-ary n-cubes类代表了并行和分布式计算系统中最常用的互连拓扑。本文考虑了偶k≥4和n≥2的缺陷k-ary n-立方体,使得k-ary n-立方体的每个顶点与至少两条健康边相关联。基于这一要求,我们研究了k元n立方在边双环性方面的容错能力。我们证明了在k元n立方Qnk中,即使Qnk有多达4n−5个边故障,每个健康边都包含在偶数长度为6 ~ |V(Qnk)|的无故障环中,并且我们的结果就可容忍的边故障数而言是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信