Distributed Data-Driven Power Iteration for Strongly Connected Networks

Azwirman Gusrialdi, Z. Qu
{"title":"Distributed Data-Driven Power Iteration for Strongly Connected Networks","authors":"Azwirman Gusrialdi, Z. Qu","doi":"10.23919/ecc54610.2021.9654946","DOIUrl":null,"url":null,"abstract":"This paper presents data-driven power iteration to distributively estimate the dominant eigenvalues of an unknown linear time-invariant system. The proposed strategy only requires a single trajectory data or measurements. Furthermore, in order to perform the distributed estimation, the communication network topology can be chosen to be any strongly connected directed graphs. The proposed data-driven power iteration is demonstrated using several numerical examples and is then applied to estimate the generalized algebraic connectivity of cooperative systems and to control the epidemic spreading.","PeriodicalId":105499,"journal":{"name":"2021 European Control Conference (ECC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ecc54610.2021.9654946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents data-driven power iteration to distributively estimate the dominant eigenvalues of an unknown linear time-invariant system. The proposed strategy only requires a single trajectory data or measurements. Furthermore, in order to perform the distributed estimation, the communication network topology can be chosen to be any strongly connected directed graphs. The proposed data-driven power iteration is demonstrated using several numerical examples and is then applied to estimate the generalized algebraic connectivity of cooperative systems and to control the epidemic spreading.
强连接网络的分布式数据驱动功率迭代
提出了一种数据驱动的幂次迭代方法来估计未知线性定常系统的显性特征值。所提出的策略只需要单个轨迹数据或测量。此外,为了进行分布式估计,通信网络拓扑可以选择为任意强连通有向图。通过几个数值算例验证了数据驱动的功率迭代方法,并将其应用于合作系统的广义代数连通性估计和流行病蔓延的控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信