Vasileios Matsoukas, Themistoklis G. Diamantopoulos, Michail D. Papamichail, A. Symeonidis
{"title":"Towards Analyzing Contributions from Software Repositories to Optimize Issue Assignment","authors":"Vasileios Matsoukas, Themistoklis G. Diamantopoulos, Michail D. Papamichail, A. Symeonidis","doi":"10.1109/QRS51102.2020.00042","DOIUrl":null,"url":null,"abstract":"Most software teams nowadays host their projects online and monitor software development in the form of issues/tasks. This process entails communicating through comments and reporting progress through commits and closing issues. In this context, assigning new issues, tasks or bugs to the most suitable contributor largely improves efficiency. Thus, several automated issue assignment approaches have been proposed, which however have major limitations. Most systems focus only on assigning bugs using textual data, are limited to projects explicitly using bug tracking systems, and may require manually tuning parameters per project. In this work, we build an automated issue assignment system for GitHub, taking into account the commits and issues of the repository under analysis. Our system aggregates feature probabilities using a neural network that adapts to each project, thus not requiring manual parameter tuning. Upon evaluating our methodology, we conclude that it can be efficient for automated issue assignment.","PeriodicalId":301814,"journal":{"name":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS51102.2020.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Most software teams nowadays host their projects online and monitor software development in the form of issues/tasks. This process entails communicating through comments and reporting progress through commits and closing issues. In this context, assigning new issues, tasks or bugs to the most suitable contributor largely improves efficiency. Thus, several automated issue assignment approaches have been proposed, which however have major limitations. Most systems focus only on assigning bugs using textual data, are limited to projects explicitly using bug tracking systems, and may require manually tuning parameters per project. In this work, we build an automated issue assignment system for GitHub, taking into account the commits and issues of the repository under analysis. Our system aggregates feature probabilities using a neural network that adapts to each project, thus not requiring manual parameter tuning. Upon evaluating our methodology, we conclude that it can be efficient for automated issue assignment.