Semantic and Visual Enrichment Hierarchical Network for Medical Image Report Generation

Qian Tang, Yongbin Yu, Xiao Feng, Chenhui Peng
{"title":"Semantic and Visual Enrichment Hierarchical Network for Medical Image Report Generation","authors":"Qian Tang, Yongbin Yu, Xiao Feng, Chenhui Peng","doi":"10.1109/CACML55074.2022.00128","DOIUrl":null,"url":null,"abstract":"This paper highlights a novel medical image report generator named SVEH-Net (Semantic and Visual Enrichment Hierarchical Network), which is based on the encoder-decoder framework and attention mechanism. With the consideration of semantic, visual, and tag features fusion, an image feature encoding (IFE) module is introduced to provide global image features for the decoder, and a hierarchical decoder (H-Decoder) which can fusion all semantic and visual features and generate two reports at one time is proposed. In the experiments, our proposed models are evaluated on the Indiana University Chest X-ray radiology report dataset (IU X-ray) and PEIR Gross dataset. On the both two datasets, our model outperforms the state-of-the-art method in BLEU-1/2/3/4, METEOR, and ROUGE-L scores.","PeriodicalId":137505,"journal":{"name":"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACML55074.2022.00128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper highlights a novel medical image report generator named SVEH-Net (Semantic and Visual Enrichment Hierarchical Network), which is based on the encoder-decoder framework and attention mechanism. With the consideration of semantic, visual, and tag features fusion, an image feature encoding (IFE) module is introduced to provide global image features for the decoder, and a hierarchical decoder (H-Decoder) which can fusion all semantic and visual features and generate two reports at one time is proposed. In the experiments, our proposed models are evaluated on the Indiana University Chest X-ray radiology report dataset (IU X-ray) and PEIR Gross dataset. On the both two datasets, our model outperforms the state-of-the-art method in BLEU-1/2/3/4, METEOR, and ROUGE-L scores.
基于语义和视觉丰富层次网络的医学图像报告生成
本文重点介绍了一种基于编码器-解码器框架和注意机制的新型医学图像报告生成器SVEH-Net (Semantic and Visual Enrichment Hierarchical Network)。考虑到语义、视觉和标签特征融合,引入图像特征编码(IFE)模块为解码器提供全局图像特征,并提出了一种能够融合所有语义和视觉特征并同时生成两份报告的分层解码器(H-Decoder)。在实验中,我们提出的模型在印第安纳大学胸部x射线报告数据集(IU x射线)和PEIR Gross数据集上进行了评估。在这两个数据集上,我们的模型在BLEU-1/2/3/4、METEOR和ROUGE-L得分方面都优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信