W. Ali, Yongpeng Zhang, P. Cofie, Jian Zhang, D. Vaman
{"title":"Digital controller design for analog MIMO systems with multiple I/O delays","authors":"W. Ali, Yongpeng Zhang, P. Cofie, Jian Zhang, D. Vaman","doi":"10.1109/CCDC.2012.6244009","DOIUrl":null,"url":null,"abstract":"This paper proposes a discretization scheme and an optimal digital cascaded plus state-feedback controller for Multiple-Input-Multiple-Output (MIMO) continuous-time systems with multiple time delays in both inputs and outputs. Firstly, an equivalent discrete-time model is obtained from the MIMO analog time-delayed system. The equivalent discrete-time model and a partially predetermined digital cascaded controller are formulated as an augmented discrete-time state-space system for state-feed forward and state-feedback Linear Quadratic Regulator (LQR) design. As a result, the parameters of the cascaded controller and its associated state-feedback controller can be determined by tuning the weighting matrices in the LQR optimal design. Then a discrete-time optimal observer for the MIMO analog time-delayed system is constructed for the implementation of the designed state-feedback digital controller. The proposed methodology has been verified through both simulation and experiment on the induction motor drive system.","PeriodicalId":345790,"journal":{"name":"2012 24th Chinese Control and Decision Conference (CCDC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 24th Chinese Control and Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2012.6244009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper proposes a discretization scheme and an optimal digital cascaded plus state-feedback controller for Multiple-Input-Multiple-Output (MIMO) continuous-time systems with multiple time delays in both inputs and outputs. Firstly, an equivalent discrete-time model is obtained from the MIMO analog time-delayed system. The equivalent discrete-time model and a partially predetermined digital cascaded controller are formulated as an augmented discrete-time state-space system for state-feed forward and state-feedback Linear Quadratic Regulator (LQR) design. As a result, the parameters of the cascaded controller and its associated state-feedback controller can be determined by tuning the weighting matrices in the LQR optimal design. Then a discrete-time optimal observer for the MIMO analog time-delayed system is constructed for the implementation of the designed state-feedback digital controller. The proposed methodology has been verified through both simulation and experiment on the induction motor drive system.