High precision FPGA implementation of neural network activation functions

Francisco Ortega-Zamorano, J. M. Jerez, Gustavo Juárez, Jorge O. Perez, L. Franco
{"title":"High precision FPGA implementation of neural network activation functions","authors":"Francisco Ortega-Zamorano, J. M. Jerez, Gustavo Juárez, Jorge O. Perez, L. Franco","doi":"10.1109/INTELES.2014.7008986","DOIUrl":null,"url":null,"abstract":"The efficient implementation of artificial neural networks in FPGA boards requires tackling several issues that strongly affect the final result. One of these issues is the computation of the neuron's activation function. In this work, a detailed analysis of the FPGA implementations of the Sigmoid and Exponential functions is carried out, in a approach combining a lookup table with a linear interpolation procedure. Further, to optimize board resources utilization, a time division multiplexing of the multiplier attached to the neurons was used. The results are evaluated in terms of the absolute and relative errors obtained and also through measuring a quality factor and the resource utilization, showing a clear improvement in relationship to previously published works.","PeriodicalId":345619,"journal":{"name":"2014 IEEE Symposium on Intelligent Embedded Systems (IES)","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Intelligent Embedded Systems (IES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELES.2014.7008986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The efficient implementation of artificial neural networks in FPGA boards requires tackling several issues that strongly affect the final result. One of these issues is the computation of the neuron's activation function. In this work, a detailed analysis of the FPGA implementations of the Sigmoid and Exponential functions is carried out, in a approach combining a lookup table with a linear interpolation procedure. Further, to optimize board resources utilization, a time division multiplexing of the multiplier attached to the neurons was used. The results are evaluated in terms of the absolute and relative errors obtained and also through measuring a quality factor and the resource utilization, showing a clear improvement in relationship to previously published works.
高精度的FPGA实现神经网络激活函数
人工神经网络在FPGA板上的有效实现需要解决几个强烈影响最终结果的问题。其中一个问题是神经元激活函数的计算。在这项工作中,对Sigmoid和指数函数的FPGA实现进行了详细的分析,采用了将查找表与线性插值程序相结合的方法。此外,为了优化电路板资源利用率,使用了附加在神经元上的乘法器的时分复用。根据获得的绝对误差和相对误差,以及通过测量质量因子和资源利用率来评估结果,显示出与先前发表的作品相比有明显改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信